Free access
Volume 13, Number 2, April-June 2007
Page(s) 359 - 377
Published online 12 May 2007
  1. M. Bernot, V. Caselles and J.-M. Morel, Are there infinite irregation tree? J. Math. Fluid Mech. 8 (2006) 311–332. [CrossRef] [MathSciNet]
  2. A. Brancolini, G. Buttazzo and F. Santambrogio, Path functions over Wasserstein spaces.
  3. T. De Pauw and R. Hardt, Size minimization and approximating problems. Calc. Var. Partial Differ. Equ. 17 (2003) 405–442. [CrossRef]
  4. von C. Ettingshausen, Die Blatt-Skelete der Dikotyledonen. Wien: Staatsdruckerei, Wien (1861).
  5. E.N. Gilbert, Minimum cost communication networks. Bell System Tech. J. 46 (1967) 2209–2227.
  6. J.M. Harris, J.L. Hist and M.J. Mossinghoff, Combinatorics and graph theory. Springer-verlag (2000).
  7. L.J. Hickey, A revised classification of the architecture of dicotyledonous leaves, in Anatomy of the dicotyledons, 2nd edn., Vol. I, Systematic anatomy of the leaves and stem., C.R. Metcalfe, L. Chalk, Eds., Oxford, Clarendon Press (1979) 25–39.
  8. F. Maddalena, J.-M. Morel and S. Solimini, A variational model of irrigation patterns. Interfaces Free Bound. 5 (2003) 391–415. [CrossRef] [MathSciNet]
  9. R. Melville, Leaf venation patterns and the origin of angiosperms. Nature 224 (1969) 121–125. [CrossRef]
  10. R. Melville, The terminology of leaves architecture. Taxon 25 (1976) 549–562. [CrossRef]
  11. T. Nelson and N. Dengler, Leaf vascular pattern formation. Plant Cell 9 (1997) 1121–1135. [CrossRef] [PubMed]
  12. Q. Xia, Optimal paths related to transport problems. Comm. Cont. Math. 5 (2003) 251–279. [CrossRef] [MathSciNet]
  13. Q. Xia, Interior regularity of optimal transport paths. Calc. Var. Partial Differ. Equ. 20 (2004) 283–299. [CrossRef]
  14. Q. Xia, Boundary regularity of optimal transport paths.