Free access
Volume 14, Number 4, October-December 2008
Page(s) 795 - 801
Published online 30 January 2008
  1. J.-J. Alibert and B. Dacorogna, An example of a quasiconvex function that is not polyconvex in two dimensions. Arch. Rational Mech. Anal. 117 (1992) 155–166. [CrossRef] [MathSciNet]
  2. J.M. Ball, Some open problems in elasticity, in Geometry, Mechanics, and Dynamics – Volume in Honor of the 60th Birthday of J.E. Marsden, P. Newton, P. Holmes and A. Weinstein Eds., Springer-Verlag (2002) 3–59.
  3. B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag (1989).
  4. D. Faraco and L. Székelyhidi, Tartar's conjecture and localization of the quasiconvex hull in Formula . Max Planck Institute for Mathematics in the Sciences, Preprint N° 60 (2006).
  5. S. Gutiérrez, A necessary condition for the quasiconvexity of polynomials of degree four. J. Convex Anal. 13 (2006) 51–60. [MathSciNet]
  6. T. Iwaniec, Nonlinear Cauchy-Riemann operators in Formula . Trans. Amer. Math. Soc. 354 (2002) 1961–1995. [CrossRef] [MathSciNet]
  7. T. Iwaniec and J. Kristensen, A construction of quasiconvex functions. Rivista di Matematica Università di Parma 4 (2005) 75–89.
  8. J. Kristensen, On the non-locality of quasiconvexity. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 1–13. [CrossRef] [MathSciNet]
  9. C.B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25–53. [CrossRef] [MathSciNet]
  10. S. Müller, A sharp version of Zhang's theorem on truncating sequences of gradients. Trans. Amer. Math. Soc. 351 (1999) 4585–4597. [CrossRef] [MathSciNet]
  11. S. Müller, Rank-one convexity implies quasiconvexity on diagonal matrices. Internat. Math. Res. Not. 20 (1999) 1087–1095.
  12. F. Sauvigny, Partial differential equations, Foundations and Integral Representations 1. Springer-Verlag (2006).
  13. V. Šverák, Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh 120A (1992) 185–189.