Free access
Volume 16, Number 2, April-June 2010
Page(s) 247 - 274
Published online 10 February 2009
  1. O. Bodart and C. Fabre, Controls insensitizing the norm of the solution of a semilinear heat equation. J. Math. Anal. Appl. 195 (1995) 658–683. [CrossRef] [MathSciNet]
  2. T. Coulhon and X.T. Duong, Maximal regularity and kernel bounds: observations on a theorem by Hieber and Prüss. Adv. Differ. Equ. 5 (2000) 343–368.
  3. L. de Teresa, Controls insensitizing the semilinear heat equation. Comm. P.D.E. 25 (2000) 39–72. [CrossRef] [MathSciNet]
  4. C. Fabre, J.P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 31–61. [CrossRef] [MathSciNet]
  5. E. Fernández-Cara, M. González-Burgos and L. de Teresa, Boundary controllability results on a cascade system of 1-d heat equations. (In preparation).
  6. S. Guerrero, Controllability of systems of Stokes equations with one control force: existence of insensitizing controls. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007) 1029–1054. [CrossRef] [MathSciNet]
  7. J.L. Lions, Remarques préliminaires sur le contrôle des systèmes à données incomplètes, in Proceedings of the “XI Congreso de Ecuaciones Diferenciales y Aplicaciones (CEDYA)", Málaga (Spain) (1989) 43–54.
  8. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences 44. Springer-Verlag (1983).
  9. J.C. Saut and B. Scheurer, Unique continuation for some evolution equations. J. Differ. Equ. 66 (1987) 118–139. [CrossRef] [MathSciNet]
  10. K. Yosida, Functional Analysis, Die Grundlehren der Mathematischen Wissenschaften 123. Springer-Verlag, New York, (1974).