Free access
Issue
ESAIM: COCV
Volume 17, Number 4, October-December 2011
Page(s) 931 - 954
DOI http://dx.doi.org/10.1051/cocv/2010032
Published online 18 August 2010
  1. R.A. Adams, Sobolev spaces, Pure and Applied Mathematics 65. Academic Press, New York-London (1975).
  2. L. Banas and R. Nürnberg, A multigrid method for the Cahn-Hilliard equation with obstacle potential. Appl. Math. Comput. 213 (2009) 290–303. [CrossRef] [MathSciNet]
  3. J.W. Barrett, J.F. Blowey and H. Garcke, Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37 (1999) 286–318. [CrossRef] [MathSciNet]
  4. J.W. Barrett, R. Nürnberg and V. Styles, Finite element approximation of a void electromigration model. SIAM J. Numer. Anal. 42 (2004) 738–772. [CrossRef] [MathSciNet]
  5. L. Blank, H. Garcke, L. Sarbu and V. Styles, Primal-dual active set methods for Allen-Cahn variational inequalities with non-local constraints. Preprint SPP1253-09-01 (2009).
  6. J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. I. Mathematical analysis. Eur. J. Appl. Math. 2 (1991) 233–280. [CrossRef] [MathSciNet]
  7. J.F. Blowey and C.M. Elliott, The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. II. Numerical analysis. Eur. J. Appl. Math. 3 (1992) 147–179. [CrossRef] [MathSciNet]
  8. J.F. Blowey and C.M. Elliott, Curvature dependent phase boundary motion and parabolic double obstacle problems, in Degenerate Diffusions, W.-M. Ni, L.A. Peletier and J.L. Vazquez Eds., IMA Vol. Math. Appl. 47, Springer, New York (1993) 19–60.
  9. J.F. Blowey and C.M. Elliott, A phase field model with a double obstacle potential, in Motion by mean curvature, G. Buttazzo and A. Visintin Eds., de Gruyter (1994) 1–22.
  10. J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958) 258–267. [CrossRef]
  11. I. Capuzzo Dolcetta, S.F. Vita and R. March, Area-preserving curve-shortening flows: From phase separation to image processing. Interfaces and Free Boundaries 4 (2002) 325–434. [CrossRef] [MathSciNet]
  12. X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation. J. Differential Geom. 44 (1996) 262–311. [MathSciNet]
  13. X. Chen, Z. Nashed and L. Qi, Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38 (2000) 1200–1216. [CrossRef] [MathSciNet]
  14. M. Copetti and C.M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer. Math. 63 (1992) 39–65. [CrossRef] [MathSciNet]
  15. T.A. Davis, Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM Trans. Math. Soft. 30 (2003) 196–199. [CrossRef] [MathSciNet]
  16. T.A. Davis, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM Trans. Math. Soft. 34 (2003) 165–195.
  17. T.A. Davis and I.S. Duff, An unsymmetric-pattern multifrontal method for sparse LU factorization. SIAM J. Matrix Anal. Appl. 18 (1997) 140–158. [CrossRef] [MathSciNet]
  18. I.S. Duff and J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear. ACM Trans. Math. Soft. 9 (1983) 302–325. [CrossRef]
  19. C.M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation, in Mathematical models for phase change problems, Internat. Ser. Numer. Math. 88, Birkhäuser, Basel (1989).
  20. C.M. Elliott and A.R. Gardiner, One dimensional phase field computations, Numerical Analysis 1993, Proceedings of Dundee Conference, D.F. Griffiths and G.A. Watson Eds., Longman Scientific and Technical (1994) 56–74.
  21. C.M. Elliott and S. Luckhaus, A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy. SFB 256, University of Bonn, Preprint 195 (1991).
  22. C.M. Elliott and J. Ockendon, Weak and Variational Methods for Moving Boundary Problems, Pitman Research Notes in Mathematics 59. Pitman (1982).
  23. L.C. Evans, Partial differential equations, Graduate Studies in Mathematics 19. American Mathematical Society, Providence (1998).
  24. A. Friedman, Variational principles and free-boundary problemsPure and Applied Mathematics. John Wiley & Sons, Inc., New York (1982).
  25. H. Garcke, Mechanical effects in the Cahn-Hilliard model: A review on mathematical results, in Mathematical Methods and Models in phase transitions, A. Miranvielle Ed., Nova Science Publ. (2005) 43–77.
  26. C. Gräser, Analysis und Approximation der Cahn-Hilliard Gleichung mit Hindernispotential. Diplomarbeit, Freie Universität Berlin, Fachbereich Mathematik und Informatik (2004).
  27. C. Gräser and R. Kornhuber, On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints, in Domain decomposition methods in science and engineering XVI, Lect. Notes Comput. Sci. Eng. 55, Springer, Berlin (2007) 91–102.
  28. C. Gräser and R. Kornhuber, Nonsmooth Newton methods for set-valued saddle point problems. SIAM J. Numer. Anal. 47 (2009) 1251–1273. [CrossRef] [MathSciNet]
  29. C. Gräser and R. Kornhuber, Multigrid methods for obstacle problems. J. Comput. Math. 27 (2009) 1–44. [MathSciNet]
  30. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002) 865–888. [CrossRef] [MathSciNet]
  31. K. Ito and K. Kunisch, Semi-smooth Newton methods for variational inequalities of the first kind. ESAIM: M2AN 37 (2003) 41–62. [CrossRef] [EDP Sciences]
  32. B.M. Irons, A frontal solution scheme for finite element analysis. Int. J. Numer. Methods Eng. 2 (1970) 5–32. [CrossRef]
  33. D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Pure and Applied Mathematics 88. Academic Press, Inc., New York-London (1980).
  34. E. Kuhl and D.W. Schmid, Computational modeling of mineral unmixing and growth: An application of the Cahn-Hilliard equation. Comp. Mech. 39 (2007) 439–451. [CrossRef]
  35. P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16 (1979) 964–979. [CrossRef] [MathSciNet]
  36. J.W.H. Liu, The multifrontal method for sparse matrix solution: Theory and practice. SIAM Rev. 34 (1992) 82–109. [CrossRef] [MathSciNet]
  37. J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1978) 2617–2654. [CrossRef] [MathSciNet]
  38. A. Novick-Cohen, The Cahn-Hilliard equation: mathematical and modeling perspectives. Adv. Math. Sci. Appl. 8 (1998) 965–985. [MathSciNet]
  39. R.L. Pego, Front migration in the nonlinear Cahn–Hilliard equation. Proc. Roy. Soc. London, Ser. A 422 (1989) 116–133.
  40. A. Schmidt and K.G. Siebert, Design of adaptive finite element software: The finite element toolbox ALBERTA, Lect. Notes Comput. Sci. Eng. 42. Springer, Berlin (2005).
  41. B. Stoth, Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spherical symmetry. J. Diff. Equ. 125 (1996) 154–183. [CrossRef]
  42. S. Tremaine, On the origin of irregular structure in Saturn's rings. Ast. J. 125 (2003) 894–901. [CrossRef]
  43. F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen: Theorie, Verfahren und Anwendungen. Vieweg Verlag (2005).
  44. S. Zhou and M.Y. Wang, Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition. Struct. Multidisc. Optim. 33 (2007) 89–111. [CrossRef]