Free access
Issue
ESAIM: COCV
Volume 17, Number 4, October-December 2011
Page(s) 955 - 974
DOI http://dx.doi.org/10.1051/cocv/2010033
Published online 18 August 2010
  1. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden (1976).
  2. E. Bonetti and G. Bonfanti, Well-posedness results for a model of damage in thermoviscoelastic materials. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (2008) 1187–1208. [CrossRef]
  3. E. Bonetti and M. Frémond, Collisions and fracture, a 1-D example: How to tear off a chandelier from the ceiling. J. Elast. 74 (2004) 47–66. [CrossRef]
  4. E. Bonetti and G. Schimperna, Local existence for Frémond's model of damage in elastic materials. Contin. Mech. Thermodyn. 16 (2004) 319–335. [CrossRef] [MathSciNet]
  5. E. Bonetti, A. Segatti and G. Schimperna, On a doubly nonlinear model for the evolution of damaging in viscoelastic materials. J. Diff. Equ. 218 (2005) 91–116. [CrossRef] [MathSciNet] [PubMed]
  6. E. Bonetti, G. Bonfanti and R. Rossi, Well-posedness and long-time behaviour for a model of contact with adhesion. Indiana Univ. Math. J. 56 (2007) 2787–2819. [CrossRef] [MathSciNet]
  7. E. Bonetti, G. Bonfanti and R. Rossi, Global existence for a contact problem with adhesion. Math. Meth. Appl. Sci. 31 (2008) 1029–1064. [CrossRef]
  8. E. Bonetti, G. Bonfanti and R. Rossi, Thermal effects in adhesive contact: modelling and analysis. Nonlinearity 22 (2009) 2697–2731. [CrossRef] [MathSciNet] [PubMed]
  9. P. Colli, F. Luterotti, G. Schimperna and U. Stefanelli, Global existence for a class of generalized systems for irreversible phase changes. NoDEA Nonlinear Diff. Equ. Appl. 9 (2002) 255–276. [CrossRef]
  10. F. Freddi and M. Frémond, Damage in domains and interfaces: a coupled predictive theory. J. Mech. Mater. Struct. 7 (2006) 1205–1233. [CrossRef]
  11. M. Frémond, Équilibre des structures qui adhèrent à leur support. C. R. Acad. Sci. Paris 295 (1982) 913–916.
  12. M. Frémond, Adhérence des solides. J. Méc. Théor. Appl. 6 (1987) 383–407.
  13. M. Frémond, Non-smooth Thermomechanics. Springer-Verlag, Berlin (2002).
  14. M. Frémond, Collisions. Edizioni del Dipartimento di Ingegneria Civile dell' Università di Roma Tor Vergata, Italy (2007).
  15. M. Frémond and N. Kenmochi, Damage problems for viscous locking materials. Adv. Math. Sci. Appl. 16 (2006) 697–716. [MathSciNet]
  16. M. Frémond and B. Nedjar, Damage, gradient of damage and priciple of virtual power. Int. J. Solids Struct. 33 (1996) 1083–1103. [CrossRef]
  17. M. Frémond, K. Kuttler and M. Shillor, Existence and uniqueness of solutions for a dynamic one-dimensional damage model. J. Math. Anal. Appl. 229 (1999) 271–294. [CrossRef] [MathSciNet]
  18. J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod Gauthier-Villars, Paris (1969).
  19. J.J. Moreau, Sur les lois de frottement, de viscosité et plasticité. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 271 (1970) 608–611.
  20. N. Point, Unilateral contact with adherence. Math. Meth. Appl. Sci. 10 (1998) 367–381. [CrossRef]
  21. J. Simon, Compact sets in the space Lp(0,T; B). Ann. Mat. Pura Appl. 146 (1987) 65–96.