Free access
Issue
ESAIM: COCV
Volume 17, Number 4, October-December 2011
Page(s) 1144 - 1157
DOI http://dx.doi.org/10.1051/cocv/2010041
Published online 08 November 2010
  1. J.M. Ball and M. Slemrod, Feedback stabilization of distributed semilinear control systems. Appl. Math. Optim. 5 (1979) 169–179. [CrossRef] [MathSciNet]
  2. J.M. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semilinear control systems. Commun. Pure Appl. Math. 32 (1979) 555–587. [CrossRef] [MathSciNet]
  3. J.-M. Coron and B. d'Andréa-Novel, Stabilization of a rotating body-beam without damping. IEEE Trans. Autom. Control. 43 (1998) 608–618. [CrossRef] [MathSciNet]
  4. J.-F. Couchouron, Compactness theorems for abstract evolution problems. J. Evol. Equ. 2 (2002) 151–175. [CrossRef] [MathSciNet]
  5. J.-F. Couchouron and M. Kamenski, An abstract topological point of view and a general averaging principle in the theory of differential inclusions. Nonlinear Anal. 42 (2000) 1101–1129. [CrossRef] [MathSciNet]
  6. R. Courant and D. Hilbert, Methods of Mathematical Physics 1. Interscience, New York (1953).
  7. C.M. Dafermos and M. Slemrod, Asymptotic behaviour of nonlinear contraction semigroups. J. Funct. Anal. 13 (1973) 97–106. [CrossRef]
  8. A.M. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics 377. Berlin-Heidelberg-New York, Springer-Verlag (1974).
  9. A. Haraux, Almost-periodic forcing for a wave equation with a nonlinear, local damping term. Proc. R. Soc. Edinb., Sect. A, Math. 94 (1983) 195–212.
  10. A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41 (1936) 367–379. [CrossRef] [MathSciNet]
  11. V. Jurdjevic and J.P. Quinn, Controllability and stability. J. Differ. Equ. 28 (1978) 381–389. [CrossRef] [MathSciNet]
  12. A. Pazy, A class of semi-linear equations of evolution. Israël J. Math. 20 (1975) 23–36. [CrossRef] [MathSciNet]
  13. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag (1975).
  14. J. Simon, Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 146 (1987) 65–96.