Free Access
Volume 17, Number 4, October-December 2011
Page(s) 1158 - 1173
Published online 28 October 2010
  1. E. Calabi and P. Hartman, On the smoothness of isometries. Duke Math. J. 37 (1970) 741–750. [CrossRef] [MathSciNet]
  2. G. Dal Maso, An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications 8. Birkhäuser (1993).
  3. E. Efrati, E. Sharon and R. Kupferman, Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57 (2009) 762–775. [CrossRef] [MathSciNet]
  4. G. Friesecke, R. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461–1506. [CrossRef] [MathSciNet]
  5. G. Friesecke, R. James, M.G. Mora and S. Müller, Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence. C. R. Math. Acad. Sci. Paris 336 (2003) 697–702. [CrossRef] [MathSciNet]
  6. G. Friesecke, R. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180 (2006) 183–236. [CrossRef] [MathSciNet]
  7. M. Gromov, Partial Differential Relations. Springer-Verlag, Berlin-Heidelberg (1986).
  8. P. Guan and Y. Li, The Weyl problem with nonnegative Gauss curvature. J. Diff. Geometry 39 (1994) 331–342.
  9. Q. Han and J.-X. Hong, Isometric embedding of Riemannian manifolds in Euclidean spaces, Mathematical Surveys and Monographs 130. American Mathematical Society, Providence (2006).
  10. J.-X. Hong and C. Zuily, Isometric embedding of the 2-sphere with nonnegative curvature in Formula . Math. Z. 219 (1995) 323–334. [CrossRef] [MathSciNet]
  11. J.A. Iaia, Isometric embeddings of surfaces with nonnegative curvature in Formula . Duke Math. J. 67 (1992) 423–459. [CrossRef] [MathSciNet]
  12. Y. Klein, E. Efrati and E. Sharon, Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315 (2007) 1116–1120. [CrossRef] [MathSciNet] [PubMed]
  13. N.H. Kuiper, On C1 isometric embeddings. I. Indag. Math. 17 (1955) 545–556.
  14. N.H. Kuiper, On C1 isometric embeddings. II. Indag. Math. 17 (1955) 683–689.
  15. M. Lewicka, M.G. Mora and M.R. Pakzad, A nonlinear theory for shells with slowly varying thickness. C.R. Acad. Sci. Paris, Ser. I 347 (2009) 211–216.
  16. M. Lewicka, M.G. Mora and M.R. Pakzad, Shell theories arising as low energy Γ-limit of 3d nonlinear elasticity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. IX (2010) 1–43.
  17. F.C. Liu, A Lusin property of Sobolev functions. Indiana U. Math. J. 26 (1977) 645–651. [CrossRef]
  18. A.V. Pogorelov, An example of a two-dimensional Riemannian metric which does not admit a local realization in E3. Dokl. Akad. Nauk. SSSR (N.S.) 198 (1971) 42–43. [Soviet Math. Dokl. 12 (1971) 729–730.]
  19. M. Spivak, A Comprehensive Introduction to Differential Geometry. Third edition, Publish or Perish Inc. (1999).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.