Free Access
Issue
ESAIM: COCV
Volume 18, Number 1, January-March 2012
Page(s) 81 - 90
DOI https://doi.org/10.1051/cocv/2010046
Published online 02 December 2010
  1. E. Le Gruyer, On absolutely minimizing Lipschitz extensions and PDE Δ(u) = 0. NoDEA 14 (2007) 29–55. [CrossRef]
  2. E. Le Gruyer and J.C. Archer, Harmonious extensions. SIAM J. Math. Anal. 29 (1998) 279–292. [CrossRef] [MathSciNet]
  3. A.P. Maitra and W.D. Sudderth, Borel stochastic games with limsup payoff. Ann. Probab. 21 (1993) 861–885. [CrossRef] [MathSciNet]
  4. A.P. Maitra and W.D. Sudderth, Discrete gambling and stochastic games, Applications of Mathematics 32. Springer-Verlag (1996).
  5. J.J. Manfredi, M. Parviainen and J.D. Rossi, An asymptotic mean value property characterization of p-harmonic functions. Proc. Am. Math. Soc. 138 (2010) 881–889. [CrossRef]
  6. J.J. Manfredi, M. Parviainen and J.D. Rossi, On the definition and properties of p-harmonious functions. Preprint (2009).
  7. A. Oberman, A convergent difference scheme for the infinity Laplacian : construction of absolutely minimizing Lipschitz extensions. Math. Comp. 74 (2005) 1217–1230. [CrossRef] [MathSciNet]
  8. Y. Peres and S. Sheffield, Tug-of-war with noise : a game theoretic view of the p-Laplacian. Duke Math. J. 145 (2008) 91–120. [CrossRef] [MathSciNet]
  9. Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22 (2009) 167–210. [CrossRef] [MathSciNet]
  10. S.R.S. Varadhan, Probability theory, Courant Lecture Notes in Mathematics 7. Courant Institute of Mathematical Sciences, New York University/AMS (2001).