Free Access
Volume 18, Number 1, January-March 2012
Page(s) 91 - 123
Published online 23 December 2010
  1. R.A. Adams and J.J.F. Fournier, Sobolev spaces, Pure and Applied Mathematics (Amsterdam) 140. Elsevier/Academic Press, Amsterdam, 2nd edition (2003).
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, Oxford University Press, Oxford (2000).
  3. M. Barchiesi and G. Dal Maso, Homogenization of fiber reinforced brittle materials : the extremal cases. SIAM J. Math. Anal. 41 (2009) 1874–1889. [CrossRef] [MathSciNet]
  4. A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press, Oxford (2002).
  5. A. Braides, and V. Chiadò Piat, Another brick in the wall, in Variational problems in materials science, Progr. Nonlinear Differential Equation Appl. 68, Birkhäuser, Basel (2006) 13–24.
  6. A. Braides, A. Defranceschi and E. Vitali, Homogenization of free discontinuity problems. Arch. Rational Mech. Anal. 135 (1996) 297–356. [CrossRef] [MathSciNet]
  7. P.G. Ciarlet, Mathematical elasticity. Three-dimensional elasticity I, Studies in Mathematics and its Applications 20. North-Holland Publishing Co., Amsterdam (1988).
  8. P.G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity. Arch. Rational Mech. Anal. 97 (1987) 171–188. [CrossRef] [MathSciNet]
  9. G. Cortesani and R. Toader, A density result in SBV with respect to non-isotropic energies. Nonlinear Anal. 38 (1999) 585–604. [CrossRef] [MathSciNet]
  10. G. Dal Maso, An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications 8. Birkhäuser Boston Inc., Boston, MA (1993).
  11. G. Dal Maso and G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. Henri Poincaré Anal. Non Linéaire 27 (2010) 257–290. [CrossRef]
  12. G. Dal Maso and C.I. Zeppieri, Homogenization of fiber reinforced brittle materials : the intermediate case. Adv. Calc. Var. 3 (2010) 345–370. [CrossRef] [MathSciNet]
  13. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Studies in Advanced Mathematics, CRC Press, Boca Raton, FL (1992).
  14. G.A. Francfort and C.J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture. Commun. Pure Appl. Math. 56 (2003) 1465–1500. [CrossRef] [MathSciNet]
  15. A. Giacomini and M. Ponsiglione, Non-interpenetration of matter for SBV deformations of hyperelastic brittle materials. Proc. R. Soc. Edinb. Sect. A 138 (2008) 1019–1041. [CrossRef]
  16. G.A. Iosifýan, Homogenization of problems in the theory of elasticity with Signorini boundary conditions. Mat. Zametki 75 (2004) 818–833.
  17. N. Kikuchi and J.T. Oden, Contact problems in elasticity : a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988).
  18. D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002) 35–86.
  19. A. Mikelić, M. Shillor and R. Tapiéro, Homogenization of an elastic material with inclusions in frictionless contact. Math. Comput. Model. 28 (1998) 287–307. [CrossRef]
  20. O. Pantz, The modeling of deformable bodies with frictionless (self-)contacts. Arch. Ration. Mech. Anal. 188 (2008) 183–212. [CrossRef] [MathSciNet]
  21. L. Scardia, Damage as Γ-limit of microfractures in anti-plane linearized elasticity. Math. Models Methods Appl. Sci. 18 (2008) 1703–1740. [CrossRef] [MathSciNet] [PubMed]
  22. L. Scardia, Damage as the Γ-limit of microfractures in linearized elasticity under the non-interpenetration constraint. Adv. Calc. Var. 3 (2010) 423–458. [CrossRef] [MathSciNet]
  23. A. Signorini, Sopra alcune questioni di statica dei sistemi continui. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (1933) 231–251. [MathSciNet]
  24. P.E. Stelzig, Homogenization of many-body structures subject to large deformations and noninterpenetration. Ph.D. Thesis, Technische Universität München (2009). Available electronically at
  25. J.Y. Wong, Theory of ground vehicles. John Wiley & Sons Inc., New York (2001).