Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Magnetic Ginzburg–Landau energy with a periodic rapidly oscillating and diluted pinning term

Mickaël Dos Santos
Annales de la Faculté des sciences de Toulouse : Mathématiques 30 (4) 705 (2021)
https://doi.org/10.5802/afst.1688

Vortex patterns and sheets in segregated two component Bose–Einstein condensates

Amandine Aftalion and Etienne Sandier
Calculus of Variations and Partial Differential Equations 59 (1) (2020)
https://doi.org/10.1007/s00526-019-1637-6

Explicit expression of the microscopic renormalized energy for a pinned Ginzburg–Landau functional

Mickaël Dos Santos
Journal of Elliptic and Parabolic Equations 5 (2) 281 (2019)
https://doi.org/10.1007/s41808-019-00042-z

Multiple Ginzburg–Landau vortices pinned by randomly distributed small holes

Leonid Berlyand, Vladimir Mityushev and Shawn D Ryan
IMA Journal of Applied Mathematics (2018)
https://doi.org/10.1093/imamat/hxy033

On approximation of Ginzburg–Landau minimizers by S1-valued maps in domains with vanishingly small holes

Leonid Berlyand, Dmitry Golovaty, Oleksandr Iaroshenko and Volodymyr Rybalko
Journal of Differential Equations 264 (2) 1317 (2018)
https://doi.org/10.1016/j.jde.2017.09.037

Tunneling for the Robin Laplacian in smooth planar domains

Bernard Helffer, Ayman Kachmar and Nicolas Raymond
Communications in Contemporary Mathematics 19 (01) 1650030 (2017)
https://doi.org/10.1142/S0219199716500309

Pinning with a variable magnetic field of the two dimensional Ginzburg–Landau model

Kamel Attar
Nonlinear Analysis: Theory, Methods & Applications 139 1 (2016)
https://doi.org/10.1016/j.na.2016.02.002

Microscopic renormalized energy for a pinned Ginzburg–Landau functional

Mickaël Dos Santos
Calculus of Variations and Partial Differential Equations 53 (1-2) 65 (2015)
https://doi.org/10.1007/s00526-014-0741-x

Homogenized description of multiple Ginzburg-Landau vortices pinned by small holes

Leonid Berlyand and Volodymyr Rybalko
Networks & Heterogeneous Media 8 (1) 115 (2013)
https://doi.org/10.3934/nhm.2013.8.115

Γ-Convergence of 2D Ginzburg-Landau functionals with vortex concentration along curves

Sam Alama, Lia Bronsard and Vincent Millot
Journal d'Analyse Mathématique 114 (1) 341 (2011)
https://doi.org/10.1007/s11854-011-0020-0