The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Iasson Karafyllis , Miroslav Krstic
ESAIM: COCV, 20 3 (2014) 894-923
Published online: 2014-06-13
This article has been cited by the following article(s):
58 articles
Jean Auriol 21 (2025) https://doi.org/10.1007/978-3-031-68046-5_2
Converse Lyapunov theorem for Input-to-State Stability of Linear Integral Difference Equations
Maxence Lamarque, Jean Auriol and Delphine Bresch-Pietri Automatica 179 112437 (2025) https://doi.org/10.1016/j.automatica.2025.112437
The chemostat reactor: A stability analysis and model predictive control
Guilherme Ozorio Cassol, Charles Robert Koch and Stevan Dubljevic Journal of Process Control 138 103223 (2024) https://doi.org/10.1016/j.jprocont.2024.103223
Event-triggered boundary control of an unstable reaction diffusion PDE with input delay
Florent Koudohode, Nicolas Espitia and Miroslav Krstic Systems & Control Letters 186 105775 (2024) https://doi.org/10.1016/j.sysconle.2024.105775
Robust Stability Analysis for Integral Delay Systems: A Complete Type Functional Approach
Reynaldo Ortiz, Alexey Egorov and Sabine Mondié IEEE Transactions on Automatic Control 69 (4) 2583 (2024) https://doi.org/10.1109/TAC.2023.3314655
Optimisation of parabolic type polyhedral discrete, discrete-approximate and differential inclusions
Elimhan N. Mahmudov and Dilara Mastaliyeva International Journal of Control 97 (9) 2073 (2024) https://doi.org/10.1080/00207179.2023.2251614
A note on the delay nonlinear parabolic differential equations
Allaberen Ashyralyev, Deniz Agirseven and Sa’adu Mu’azu Filomat 38 (16) 5761 (2024) https://doi.org/10.2298/FIL2416761A
Robust stabilization of 2 × 2 first-order hyperbolic PDEs with uncertain input delay
Jing Zhang and Jie Qi Automatica 157 111235 (2023) https://doi.org/10.1016/j.automatica.2023.111235
Lyapunov functionals for linear continuous-time difference systems: A single delay case
Daniel Melchor-Aguilar Systems & Control Letters 177 105536 (2023) https://doi.org/10.1016/j.sysconle.2023.105536
Optimal control of parabolic differential inclusions in one space dimension
Elimhan N. Mahmudov International Journal of Control 95 (11) 2931 (2022) https://doi.org/10.1080/00207179.2021.1945148
Optimal control of first-order partial differential inclusions in bounded region
Elimhan N. Mahmudov International Journal of Control 95 (7) 1933 (2022) https://doi.org/10.1080/00207179.2021.1886328
Complete type Lyapunov functionals for integral delay systems with multiple delays
Daniel Melchor‐Aguilar and Hector Arismendi‐Valle International Journal of Robust and Nonlinear Control 32 (6) 3175 (2022) https://doi.org/10.1002/rnc.5737
Model-Based Feedforward Control of an Intra- and Interspecific Competitive Population System
Anna-Carina Kurth, Carina Veil and Oliver Sawodny IEEE Control Systems Letters 6 3397 (2022) https://doi.org/10.1109/LCSYS.2022.3183894
Minimal Differential Difference Realizations of Delay Differential, Differential Difference, and Neutral Delay Systems
Matthew M. Peet IEEE Control Systems Letters 5 (4) 1471 (2021) https://doi.org/10.1109/LCSYS.2020.3038758
Matthew M. Peet 4051 (2021) https://doi.org/10.23919/ACC50511.2021.9482803
Encyclopedia of Systems and Control
Iasson Karafyllis and Miroslav Krstic Encyclopedia of Systems and Control 1030 (2021) https://doi.org/10.1007/978-3-030-44184-5_100024
Representation of networks and systems with delay: DDEs, DDFs, ODE–PDEs and PIEs
Matthew M. Peet Automatica 127 109508 (2021) https://doi.org/10.1016/j.automatica.2021.109508
Stability Analysis for a Class of Linear $2\times 2$ Hyperbolic PDEs Using a Backstepping Transform
David Bou Saba, Federico Bribiesca-Argomedo, Jean Auriol, Michael Di Loreto and Florent Di Meglio IEEE Transactions on Automatic Control 65 (7) 2941 (2020) https://doi.org/10.1109/TAC.2019.2934384
Transportmodelle für Flüssigkeitsfilme
Julian Hofmann, Anton Ponomarev, Veit Hagenmeyer and Lutz Gröll at - Automatisierungstechnik 68 (8) 625 (2020) https://doi.org/10.1515/auto-2020-0016
Stability results for the continuity equation
Iasson Karafyllis and Miroslav Krstic Systems & Control Letters 135 104594 (2020) https://doi.org/10.1016/j.sysconle.2019.104594
Encyclopedia of Systems and Control
Iasson Karafyllis and Miroslav Krstic Encyclopedia of Systems and Control 1 (2020) https://doi.org/10.1007/978-1-4471-5102-9_100024-1
Input-to-State Stability for a Class of One-Dimensional Nonlinear Parabolic PDEs with Nonlinear Boundary Conditions
Jun Zheng and Guchuan Zhu SIAM Journal on Control and Optimization 58 (4) 2567 (2020) https://doi.org/10.1137/19M1283720
Necessary Stability Conditions for Integral Delay Systems
Reynaldo Ortiz, Saul Del Valle, Alexey V. Egorov and Sabine Mondie IEEE Transactions on Automatic Control 65 (10) 4377 (2020) https://doi.org/10.1109/TAC.2019.2955962
A weak maximum principle-based approach for input-to-state stability analysis of nonlinear parabolic PDEs with boundary disturbances
Jun Zheng and Guchuan Zhu Mathematics of Control, Signals, and Systems 32 (2) 157 (2020) https://doi.org/10.1007/s00498-020-00258-8
ISS-like estimates for nonlinear parabolic PDEs with variable coefficients on higher dimensional domains
Jun Zheng and Guchuan Zhu Systems & Control Letters 146 104808 (2020) https://doi.org/10.1016/j.sysconle.2020.104808
Hybrid boundary stabilization of linear first-order hyperbolic PDEs despite almost quantized measurements and control input
Nikolaos Bekiaris-Liberis Systems & Control Letters 146 104809 (2020) https://doi.org/10.1016/j.sysconle.2020.104809
Stability analysis of linear continuous-time delay-difference systems with multiple time-delays
Zhao-Yan Li, Qiuqiu Fan, Longsuo Li and Yibo Wang Journal of the Franklin Institute 356 (18) 11492 (2019) https://doi.org/10.1016/j.jfranklin.2019.08.004
Input-to-state stability of coupled hyperbolic PDE-ODE systems via boundary feedback control
Liguo Zhang, Jianru Hao and Junfei Qiao Science China Information Sciences 62 (4) (2019) https://doi.org/10.1007/s11432-018-9437-x
Jun Zheng and Guchuan Zhu 4977 (2019) https://doi.org/10.1109/CDC40024.2019.9029628
Input-to-State Stability for PDEs
Iasson Karafyllis and Miroslav Krstic Communications and Control Engineering, Input-to-State Stability for PDEs 1 (2019) https://doi.org/10.1007/978-3-319-91011-6_1
Input-to-State Stability for PDEs
Iasson Karafyllis and Miroslav Krstic Communications and Control Engineering, Input-to-State Stability for PDEs 39 (2019) https://doi.org/10.1007/978-3-319-91011-6_3
An explicit mapping from linear first order hyperbolic PDEs to difference systems
Jean Auriol and Florent Di Meglio Systems & Control Letters 123 144 (2019) https://doi.org/10.1016/j.sysconle.2018.11.012
On the Lyapunov matrices for integral delay systems
H. Arismendi-Valle and D. Melchor-Aguilar International Journal of Systems Science 50 (6) 1190 (2019) https://doi.org/10.1080/00207721.2019.1597943
A De Giorgi Iteration-Based Approach for the Establishment of ISS Properties for Burgers’ Equation With Boundary and In-domain Disturbances
Jun Zheng and Guchuan Zhu IEEE Transactions on Automatic Control 64 (8) 3476 (2019) https://doi.org/10.1109/TAC.2018.2880160
On Lyapunov functionals for linear functional difference equations
D. Melchor-Aguilar Systems & Control Letters 127 1 (2019) https://doi.org/10.1016/j.sysconle.2019.03.008
Delay-Robust Control Design for Two Heterodirectional Linear Coupled Hyperbolic PDEs
Jean Auriol, Ulf Jakob Flo Aarsnes, Philippe Martin and Florent Di Meglio IEEE Transactions on Automatic Control 63 (10) 3551 (2018) https://doi.org/10.1109/TAC.2018.2798818
Input-to-state stability with respect to boundary disturbances for a class of semi-linear parabolic equations
Jun Zheng and Guchuan Zhu Automatica 97 271 (2018) https://doi.org/10.1016/j.automatica.2018.08.007
ISS with respect to boundary and in-domain disturbances for a coupled beam-string system
Jun Zheng, Hugo Lhachemi, Guchuan Zhu and David Saussié Mathematics of Control, Signals, and Systems 30 (4) (2018) https://doi.org/10.1007/s00498-018-0228-y
Sandra Hamze, Emmanuel Witrant, Delphine Bresch-Pietri and Clement Fauvel 1514 (2018) https://doi.org/10.1109/CCTA.2018.8511359
Decay estimates for 1-D parabolic PDES with boundary disturbances
Iasson Karafyllis and Miroslav Krstic ESAIM: Control, Optimisation and Calculus of Variations (2018) https://doi.org/10.1051/cocv/2018043
Yield trajectory tracking for hyperbolic age-structured population systems
Kevin Schmidt, Iasson Karafyllis and Miroslav Krstic Automatica 90 138 (2018) https://doi.org/10.1016/j.automatica.2017.12.050
Jun Zheng and Guchuan Zhu 3758 (2018) https://doi.org/10.1109/CDC.2018.8619489
ISS In Different Norms For 1-D Parabolic Pdes With Boundary Disturbances
Iasson Karafyllis and Miroslav Krstic SIAM Journal on Control and Optimization 55 (3) 1716 (2017) https://doi.org/10.1137/16M1073753
Predictor Feedback for Delay Systems: Implementations and Approximations
Iasson Karafyllis and Miroslav Krstic Systems & Control: Foundations & Applications, Predictor Feedback for Delay Systems: Implementations and Approximations 1 (2017) https://doi.org/10.1007/978-3-319-42378-4_1
Stability and Control Design for Time-Varying Systems with Time-Varying Delays using a Trajectory-Based Approach
Frederic Mazenc, Michael Malisoff and Silviu-Iulian Niculescu SIAM Journal on Control and Optimization 55 (1) 533 (2017) https://doi.org/10.1137/15M1027838
Feedback Stabilization of Controlled Dynamical Systems
Iasson Karafyllis and Miroslav Krstic Lecture Notes in Control and Information Sciences, Feedback Stabilization of Controlled Dynamical Systems 473 101 (2017) https://doi.org/10.1007/978-3-319-51298-3_4
Sampled-data boundary feedback control of 1-D linear transport PDEs with non-local terms
Iasson Karafyllis and Miroslav Krstic Systems & Control Letters 107 68 (2017) https://doi.org/10.1016/j.sysconle.2017.07.009
Stability of integral delay equations and stabilization of age-structured models
Iasson Karafyllis and Miroslav Krstic ESAIM: Control, Optimisation and Calculus of Variations 23 (4) 1667 (2017) https://doi.org/10.1051/cocv/2016069
David Fernando Novella Rodriguez, Emmanuel Witrant and Olivier Sename 4 275 (2016) https://doi.org/10.1007/978-3-319-18072-4_14
An optimisation approach for stability analysis and controller synthesis of linear hyperbolic systems
Pierre-Olivier Lamare, Antoine Girard and Christophe Prieur ESAIM: Control, Optimisation and Calculus of Variations 22 (4) 1236 (2016) https://doi.org/10.1051/cocv/2016038
Iasson Karafyllis and Miroslav Krstic 2247 (2016) https://doi.org/10.1109/CDC.2016.7798597
A note on stability of functional difference equations
Daniel Melchor-Aguilar Automatica 67 211 (2016) https://doi.org/10.1016/j.automatica.2016.01.049
ISS with Respect to Boundary Disturbances for 1-D Parabolic PDEs
Iasson Karafyllis and Miroslav Krstic IEEE Transactions on Automatic Control 61 (12) 3712 (2016) https://doi.org/10.1109/TAC.2016.2519762
Approximate and sampled-data predictors for control of nonlinear delay systems
I. Karafyllis and M. Krstic Annual Reviews in Control 41 2 (2016) https://doi.org/10.1016/j.arcontrol.2016.04.014
Iasson Karafyllis, Michael Malisoff and Miroslav Krstic 4549 (2015) https://doi.org/10.1109/ACC.2015.7172045
Stability of linear continuous‐time difference equations with distributed delay: Constructive exponential estimates
Sérine Damak, Michael Di Loreto and Sabine Mondié International Journal of Robust and Nonlinear Control 25 (17) 3195 (2015) https://doi.org/10.1002/rnc.3249
Numerical Computation of Lyapunov Function for Hyperbolic PDE using LMI Formulation and Polytopic Embeddings**This work has been partially supported by the LabEx PERSYVAL-Lab ANR-11-LABX-0025.
Pierre-Olivier Lamare, Antoine Girard and Christophe Prieur IFAC-PapersOnLine 48 (26) 7 (2015) https://doi.org/10.1016/j.ifacol.2015.11.105
Adaptive output-feedback stabilization of non-local hyperbolic PDEs
Pauline Bernard and Miroslav Krstic Automatica 50 (10) 2692 (2014) https://doi.org/10.1016/j.automatica.2014.09.001