The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Eduardo Casas , Roland Herzog , Gerd Wachsmuth
ESAIM: COCV, 23 1 (2017) 263-295
Published online: 2016-12-09
This article has been cited by the following article(s):
37 articles
Pattern dynamics of vegetation based on optimal control theory
Li-Feng Hou, Li Li, Lili Chang, Zhen Wang and Gui-Quan Sun Nonlinear Dynamics 113 (1) 1 (2025) https://doi.org/10.1007/s11071-024-10241-6
Spatially sparse optimization problems in fractional order Sobolev spaces
Anna Lentz and Daniel Wachsmuth Optimization Methods and Software 1 (2025) https://doi.org/10.1080/10556788.2025.2477629
Analysis and simulation of sparse optimal control of the monodomain model
Maria Robert, Suresh Kumar Nadupuri and Nagaiah Chamakuri Computers & Mathematics with Applications 184 29 (2025) https://doi.org/10.1016/j.camwa.2025.02.008
Temporally sparse controls for infinite horizon semilinear parabolic equations with norm constraints
Eduardo Casas and Karl Kunisch Control and Cybernetics 53 (1) 11 (2025) https://doi.org/10.2478/candc-2024-003
Temporally sparse controls for infinite horizon semilinear parabolic equations with norm constraints
Eduardo Casas and Karl Kunisch Control and Cybernetics 53 (1) 11 (2025) https://doi.org/10.2478/candc-2024-0003
Analysis and approximation to parabolic optimal control problems with measure-valued controls in time
Wei Gong and Dongdong Liang ESAIM: Control, Optimisation and Calculus of Variations 31 2 (2025) https://doi.org/10.1051/cocv/2024085
Second-Order Sufficient Conditions in the Sparse Optimal Control of a Phase Field Tumor Growth Model with Logarithmic Potential
Jürgen Sprekels and Fredi Tröltzsch ESAIM: Control, Optimisation and Calculus of Variations 30 13 (2024) https://doi.org/10.1051/cocv/2023084
First- and second-order optimality conditions for the control of infinite horizon Navier–Stokes equations
Eduardo Casas and Karl Kunisch Optimization 1 (2024) https://doi.org/10.1080/02331934.2024.2358406
Sparse optimal control of Timoshenko's beam using a locking‐free finite element approximation
Erwin Hernández and Pedro Merino Optimal Control Applications and Methods 45 (3) 1007 (2024) https://doi.org/10.1002/oca.3085
Optimality Conditions for Sparse Optimal Control of Viscous Cahn–Hilliard Systems with Logarithmic Potential
Pierluigi Colli, Jürgen Sprekels and Fredi Tröltzsch Applied Mathematics & Optimization 90 (2) (2024) https://doi.org/10.1007/s00245-024-10187-6
Error Estimates for the Numerical Approximation of Unregularized Sparse Parabolic Control Problems
Eduardo Casas and Mariano Mateos Computational Methods in Applied Mathematics 23 (4) 877 (2023) https://doi.org/10.1515/cmam-2022-0130
Analysis and approximations of an optimal control problem for the Allen–Cahn equation
Konstantinos Chrysafinos and Dimitra Plaka Numerische Mathematik 155 (1-2) 35 (2023) https://doi.org/10.1007/s00211-023-01374-8
Second-order sufficient conditions for sparse optimal control of singular Allen–Cahn systems with dynamic boundary conditions
Jürgen Sprekels and Fredi Tröltzsch Discrete and Continuous Dynamical Systems - S (2023) https://doi.org/10.3934/dcdss.2023163
Infinite Horizon Optimal Control Problems with Discount Factor on the State, Part II: Analysis of the Control Problem
Eduardo Casas and Karl Kunisch SIAM Journal on Control and Optimization 61 (3) 1438 (2023) https://doi.org/10.1137/22M1490296
Optimal sparse boundary control of cardiac defibrillation
Nagaiah Chamakuri, Mostafa Bendahmane and Manimaran J. Nonlinear Analysis: Real World Applications 74 103945 (2023) https://doi.org/10.1016/j.nonrwa.2023.103945
A Note on Existence of Solutions to Control Problems of Semilinear Partial Differential Equations
Eduardo Casas and Daniel Wachsmuth SIAM Journal on Control and Optimization 61 (3) 1095 (2023) https://doi.org/10.1137/22M1486418
Error estimates for the numerical approximation of optimal control problems with nonsmooth pointwise-integral control constraints
Eduardo Casas, Karl Kunisch and Mariano Mateos IMA Journal of Numerical Analysis 43 (3) 1485 (2023) https://doi.org/10.1093/imanum/drac027
Optimal control of a Wilson–Cowan model of neural population dynamics
Lena Salfenmoser and Klaus Obermayer Chaos: An Interdisciplinary Journal of Nonlinear Science 33 (4) (2023) https://doi.org/10.1063/5.0144682
Sparse optimal control of a quasilinear elliptic PDE in measure spaces
Fabian Hoppe Mathematical Control and Related Fields (2022) https://doi.org/10.3934/mcrf.2022049
Infinite Horizon Optimal Control Problems for a Class of Semilinear Parabolic Equations
Eduardo Casas and Karl Kunisch SIAM Journal on Control and Optimization 60 (4) 2070 (2022) https://doi.org/10.1137/21M1464816
Eduardo Casas and Karl Kunisch 284 (2022) https://doi.org/10.23919/ACC53348.2022.9867749
Sparse Optimal Control of Pattern Formations for an SIR Reaction-Diffusion Epidemic Model
Lili Chang, Wei Gong, Zhen Jin and Gui-Quan Sun SIAM Journal on Applied Mathematics 82 (5) 1764 (2022) https://doi.org/10.1137/22M1472127
Strong stationarity for a highly nonsmooth optimization problem with control constraints
Livia Betz Mathematical Control and Related Fields (2022) https://doi.org/10.3934/mcrf.2022047
Optimal Control Problems with Sparsity for Tumor Growth Models Involving Variational Inequalities
Pierluigi Colli, Andrea Signori and Jürgen Sprekels Journal of Optimization Theory and Applications 194 (1) 25 (2022) https://doi.org/10.1007/s10957-022-02000-7
Optimal Control of Semilinear Parabolic Equations with Non-smooth Pointwise-Integral Control Constraints in Time-Space
Eduardo Casas and Karl Kunisch Applied Mathematics & Optimization 85 (1) (2022) https://doi.org/10.1007/s00245-022-09850-7
Applications of optimal nonlinear control to a whole-brain network of FitzHugh-Nagumo oscillators
Teresa Chouzouris, Nicolas Roth, Caglar Cakan and Klaus Obermayer Physical Review E 104 (2) (2021) https://doi.org/10.1103/PhysRevE.104.024213
Optimal Control of the Two-Dimensional Evolutionary Navier--Stokes Equations with Measure Valued Controls
Eduardo Casas and Karl Kunisch SIAM Journal on Control and Optimization 59 (3) 2223 (2021) https://doi.org/10.1137/20M1351400
Adaptive finite element methods for sparse PDE-constrained optimization
E Otárola, F Fuica and A Allendes IMA Journal of Numerical Analysis 40 (3) 2106 (2020) https://doi.org/10.1093/imanum/drz025
First and Second Order Conditions for Optimal Control Problems with an $L^0$ Term in the Cost Functional
Eduardo Casas and Daniel Wachsmuth SIAM Journal on Control and Optimization 58 (6) 3486 (2020) https://doi.org/10.1137/20M1318377
Optimal control of an energy-critical semilinear wave equation in 3D with spatially integrated control constraints
Karl Kunisch and Hannes Meinlschmidt Journal de Mathématiques Pures et Appliquées 138 46 (2020) https://doi.org/10.1016/j.matpur.2020.03.006
Critical Cones for Sufficient Second Order Conditions in PDE Constrained Optimization
Eduardo Casas and Mariano Mateos SIAM Journal on Optimization 30 (1) 585 (2020) https://doi.org/10.1137/19M1258244
A Hybrid Finite-Dimensional RHC for Stabilization of Time-Varying Parabolic Equations
Behzad Azmi and Karl Kunisch SIAM Journal on Control and Optimization 57 (5) 3496 (2019) https://doi.org/10.1137/19M1239787
An a posteriori error analysis of an elliptic optimal control problem in measure space
Francisco Fuica, Enrique Otárola and Abner J. Salgado Computers & Mathematics with Applications 77 (10) 2659 (2019) https://doi.org/10.1016/j.camwa.2018.12.043
Improved approximation rates for a parabolic control problem with an objective promoting directional sparsity
Eduardo Casas, Mariano Mateos and Arnd Rösch Computational Optimization and Applications 70 (1) 239 (2018) https://doi.org/10.1007/s10589-018-9979-0
Stabilization by Sparse Controls for a Class of Semilinear Parabolic Equations
Eduardo Casas and Karl Kunisch SIAM Journal on Control and Optimization 55 (1) 512 (2017) https://doi.org/10.1137/16M1084298
A review on sparse solutions in optimal control of partial differential equations
Eduardo Casas SeMA Journal 74 (3) 319 (2017) https://doi.org/10.1007/s40324-017-0121-5
Finite element approximation of sparse parabolic control problems
Eduardo Casas, Mariano Mateos and Arnd Rösch Mathematical Control & Related Fields 7 (3) 393 (2017) https://doi.org/10.3934/mcrf.2017014