The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Kangsheng Liu , Zhuangyi Liu , Qiong Zhang
ESAIM: COCV, 23 2 (2017) 443-454
Published online: 2017-01-17
This article has been cited by the following article(s):
30 articles
Stability of Euler-Bernoulli beam equation on a star-shaped network with indefinite damping
Zied Bouallagui and Mohamed Jellouli Applicable Analysis 1 (2025) https://doi.org/10.1080/00036811.2025.2468518
Energy decay for a coupled wave system with one local Kelvin–Voigt damping
Hua‐Lei Zhang Mathematische Nachrichten 297 (4) 1310 (2024) https://doi.org/10.1002/mana.202300112
Gevrey regularity of the semigroup corresponding to an Euler-Bernoulli plate equation with localized structural damping
Irena Lasiecka and Louis Tebou Discrete and Continuous Dynamical Systems (2024) https://doi.org/10.3934/dcds.2024004
Energy decay rate of the wave–wave transmission system with Kelvin–Voigt damping
Hua‐Lei Zhang Mathematical Methods in the Applied Sciences 47 (11) 8721 (2024) https://doi.org/10.1002/mma.10041
Stabilization for Wave Equation with Localized Kelvin–Voigt Damping on Cuboidal Domain: A Degenerate Case
Zhong-Jie Han, Zhuangyi Liu and Kai Yu SIAM Journal on Control and Optimization 62 (1) 441 (2024) https://doi.org/10.1137/22M153210X
Polynomial stability of one‐dimensional wave equation with local degenerate Kelvin–Voigt damping and discontinuous coefficients
Hua‐Lei Zhang ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 104 (3) (2024) https://doi.org/10.1002/zamm.202200343
Energy decay of a mixture with local viscoelasticity
Aaron M. Crenshaw, Zhuangyi Liu and Ramon Quintanilla Mathematical Methods in the Applied Sciences 46 (13) 14353 (2023) https://doi.org/10.1002/mma.9323
Polynomial stability in viscoelastic network of strings
Karim El Mufti and Rania Yahia Discrete and Continuous Dynamical Systems - S 15 (6) 1421 (2022) https://doi.org/10.3934/dcdss.2022073
Longtime behavior of multidimensional wave equation with local Kelvin–Voigt damping
Zhong‐Jie Han, Kai Yu and Qiong Zhang ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 102 (6) (2022) https://doi.org/10.1002/zamm.202000275
Sharper and finer energy decay rate for an elastic string with localized Kelvin-Voigt damping
Zhong-Jie Han, Zhuangyi Liu and Jing Wang Discrete and Continuous Dynamical Systems - S 15 (6) 1455 (2022) https://doi.org/10.3934/dcdss.2022031
Stability of Elastic Multi-Link Structures
Kaïs Ammari and Farhat Shel SpringerBriefs in Mathematics, Stability of Elastic Multi-Link Structures 115 (2022) https://doi.org/10.1007/978-3-030-86351-7_6
Eventual differentiability of coupled wave equations with local Kelvin-Voigt damping
Ahmed Bchatnia and Nadia Souayeh Discrete and Continuous Dynamical Systems - S 15 (6) 1317 (2022) https://doi.org/10.3934/dcdss.2022098
Sharp Decay Estimates for Semigroups Associated with Some One-Dimensional Fluid-Structure Interactions Involving Degeneracy
Louis Tebou SIAM Journal on Control and Optimization 60 (5) 2787 (2022) https://doi.org/10.1137/21M141854X
Research in PDEs and Related Fields
Kaïs Ammari, Zhuangyi Liu and Farhat Shel Tutorials, Schools, and Workshops in the Mathematical Sciences, Research in PDEs and Related Fields 169 (2022) https://doi.org/10.1007/978-3-031-14268-0_6
Stability of a star-shaped network with local Kelvin-Voigt damping and non-smooth coefficient at interface
Fathi Hassine Journal of Differential Equations 297 1 (2021) https://doi.org/10.1016/j.jde.2021.06.017
A transmission problem for the Timoshenko system with one local Kelvin–Voigt damping and non-smooth coefficient at the interface
Ali Wehbe and Mouhammad Ghader Computational and Applied Mathematics 40 (8) (2021) https://doi.org/10.1007/s40314-021-01446-1
Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions
Ali Wehbe, Rayan Nasser and Nahla Noun Mathematical Control & Related Fields 11 (4) 885 (2021) https://doi.org/10.3934/mcrf.2020050
Optimal polynomial stability of a string with locally distributed Kelvin–Voigt damping and nonsmooth coefficient at the interface
Mouhammad Ghader, Rayan Nasser and Ali Wehbe Mathematical Methods in the Applied Sciences 44 (2) 2096 (2021) https://doi.org/10.1002/mma.6918
Stability Results of an Elastic/Viscoelastic Transmission Problem of Locally Coupled Waves with Non Smooth Coefficients
Ali Wehbe, Ibtissam Issa and Mohammad Akil Acta Applicandae Mathematicae 171 (1) (2021) https://doi.org/10.1007/s10440-021-00384-8
Stabilization of Wave Equation on Cuboidal Domain via Kelvin--Voigt Damping: A Case without Geometric Control Condition
Kai Yu and Zhong-Jie Han SIAM Journal on Control and Optimization 59 (3) 1973 (2021) https://doi.org/10.1137/20M1332499
Gevrey Class of Locally Dissipative Euler--Bernoulli Beam Equation
G. Gómez Ávalos, J. Mun͂oz Rivera and Z. Liu SIAM Journal on Control and Optimization 59 (3) 2174 (2021) https://doi.org/10.1137/20M1312800
Logarithmic Decay of Wave Equation with Kelvin-Voigt Damping
Luc Robbiano and Qiong Zhang Mathematics 8 (5) 715 (2020) https://doi.org/10.3390/math8050715
Decays for Kelvin--Voigt Damped Wave Equations I: The Black Box Perturbative Method
Nicolas Burq SIAM Journal on Control and Optimization 58 (4) 1893 (2020) https://doi.org/10.1137/19M1259080
Stability of the wave equations on a tree with local Kelvin–Voigt damping
Kaïs Ammari, Zhuangyi Liu and Farhat Shel Semigroup Forum 100 (2) 364 (2020) https://doi.org/10.1007/s00233-019-10064-7
Stability of Two Weakly Coupled Elastic Beams with Partially Local Damping
Caihong Zhang, Yinuo Huang, Licheng Wang, et al. Mathematical Problems in Engineering 2020 1 (2020) https://doi.org/10.1155/2020/7169526
Stabilization of the wave equations with localized Kelvin–Voigt type damping under optimal geometric conditions
Rayan Nasser, Nahla Noun and Ali Wehbe Comptes Rendus. Mathématique 357 (3) 272 (2019) https://doi.org/10.1016/j.crma.2019.01.005
Stability and Regularity of Solution to the Timoshenko Beam Equation with Local Kelvin--Voigt Damping
Zhuangyi Liu and Qiong Zhang SIAM Journal on Control and Optimization 56 (6) 3919 (2018) https://doi.org/10.1137/17M1146506
Polynomial decay of an elastic/viscoelastic waves interaction system
Qiong Zhang Zeitschrift für angewandte Mathematik und Physik 69 (4) (2018) https://doi.org/10.1007/s00033-018-0981-2
On the lack of exponential stability for an elastic–viscoelastic waves interaction system
Qiong Zhang Nonlinear Analysis: Real World Applications 37 387 (2017) https://doi.org/10.1016/j.nonrwa.2017.02.019
Stability of a Timoshenko system with local Kelvin–Voigt damping
Xinhong Tian and Qiong Zhang Zeitschrift für angewandte Mathematik und Physik 68 (1) (2017) https://doi.org/10.1007/s00033-016-0765-5