Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

New global Carleman estimates and null controllability for a stochastic Cahn-Hilliard type equation

Sen Zhang, Hang Gao and Ganghua Yuan
Journal of Differential Equations 430 113203 (2025)
https://doi.org/10.1016/j.jde.2025.02.074

Carleman estimate and null controllability for a degenerate parabolic equation with a slightly superlinear reaction term

Chunpeng Wang and Yanan Zhou
Nonlinear Differential Equations and Applications NoDEA 30 (5) (2023)
https://doi.org/10.1007/s00030-023-00881-9

Exact controllability of a semilinear reaction–diffusion equation governed by a bilinear control

H. Najib, R. El Ayadi, Y. Ouakrim and M. Ouzahra
Applicable Analysis 102 (5) 1414 (2023)
https://doi.org/10.1080/00036811.2021.1986022

[Retracted] Local Null‐Controllability for Some Quasi‐Linear Phase‐Field Systems with Neumann Boundary Conditions by one Control Force

Shengzhu Shi, Dazhi Zhang and Wei Zhang
Discrete Dynamics in Nature and Society 2022 (1) (2022)
https://doi.org/10.1155/2022/7645304

Exact Internal Controllability for a Problem with Imperfect Interface

S. Monsurrò, A. K. Nandakumaran and C. Perugia
Applied Mathematics & Optimization 85 (3) (2022)
https://doi.org/10.1007/s00245-022-09843-6

Observability and null-controllability for parabolic equations in $ L_p $-spaces

Clemens Bombach, Dennis Gallaun, Christian Seifert and Martin Tautenhahn
Mathematical Control and Related Fields (2022)
https://doi.org/10.3934/mcrf.2022046

Global null-controllability and nonnegative-controllability of slightly superlinear heat equations

Kévin Le Balc'h
Journal de Mathématiques Pures et Appliquées 135 103 (2020)
https://doi.org/10.1016/j.matpur.2019.10.009

Null controllability from the exterior of fractional parabolic-elliptic coupled systems

Carole Louis-Rose
Electronic Journal of Differential Equations 2020 (01-132) 26 (2020)
https://doi.org/10.58997/ejde.2020.26

Logarithmic stability inequality in an inverse source problem for the heat equation on a waveguide

Yavar Kian, Diomba Sambou and Éric Soccorsi
Applicable Analysis 99 (13) 2210 (2020)
https://doi.org/10.1080/00036811.2018.1557324

An Insensitizing Control Problem for the Ginzburg–Landau Equation

Maurício Cardoso Santos and Thiago Yukio Tanaka
Journal of Optimization Theory and Applications 183 (2) 440 (2019)
https://doi.org/10.1007/s10957-019-01569-w

Exact controllability for evolutionary imperfect transmission problems

Luisa Faella, Sara Monsurrò and Carmen Perugia
Journal de Mathématiques Pures et Appliquées 122 235 (2019)
https://doi.org/10.1016/j.matpur.2017.11.011

Null Controllability of Linear and Semilinear Nonlocal Heat Equations with an Additive Integral Kernel

Umberto Biccari and Víctor Hernández-Santamaría
SIAM Journal on Control and Optimization 57 (4) 2924 (2019)
https://doi.org/10.1137/18M1218431

Controllability and Stabilization of Parabolic Equations

Viorel Barbu
Progress in Nonlinear Differential Equations and Their Applications, Controllability and Stabilization of Parabolic Equations 90 43 (2018)
https://doi.org/10.1007/978-3-319-76666-9_3

Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations

Alexander Y. Khapalov
Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations 185 (2017)
https://doi.org/10.1007/978-3-319-60414-5_11

Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations

Alexander Y. Khapalov
Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations 41 (2017)
https://doi.org/10.1007/978-3-319-60414-5_4

Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations

Alexander Y. Khapalov
Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations 63 (2017)
https://doi.org/10.1007/978-3-319-60414-5_5

Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations

Alexander Y. Khapalov
Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations 123 (2017)
https://doi.org/10.1007/978-3-319-60414-5_8

Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations

Alexander Y. Khapalov
Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations 203 (2017)
https://doi.org/10.1007/978-3-319-60414-5_12

Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations

Alexander Y. Khapalov
Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations 77 (2017)
https://doi.org/10.1007/978-3-319-60414-5_6

Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations

Alexander Y. Khapalov
Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations 97 (2017)
https://doi.org/10.1007/978-3-319-60414-5_7

Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations

Alexander Y. Khapalov
Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations 1 (2017)
https://doi.org/10.1007/978-3-319-60414-5_1

Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations

Alexander Y. Khapalov
Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations 13 (2017)
https://doi.org/10.1007/978-3-319-60414-5_2

Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations

Alexander Y. Khapalov
Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations 147 (2017)
https://doi.org/10.1007/978-3-319-60414-5_9

Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations

Alexander Y. Khapalov
Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations 163 (2017)
https://doi.org/10.1007/978-3-319-60414-5_10

Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations

Alexander Y. Khapalov
Mobile Point Sensors and Actuators in the Controllability Theory of Partial Differential Equations 29 (2017)
https://doi.org/10.1007/978-3-319-60414-5_3

Approximate controllability for nonlinear degenerate parabolic problems with bilinear control

Giuseppe Floridia
Journal of Differential Equations 257 (9) 3382 (2014)
https://doi.org/10.1016/j.jde.2014.06.016

Controllability to trajectories for some parabolic systems of three and two equations by one control force

Assia Benabdallah, Michel Cristofol, Patricia Gaitan and Luz de Teresa
Mathematical Control & Related Fields 4 (1) 17 (2014)
https://doi.org/10.3934/mcrf.2014.4.17

Carleman Estimates and null controllability of coupled degenerate systems

Lahcen Maniar, Abdelkarim Hajjaj, Farid Ammar khodja and El Mustapha Ait Ben Hassi
Evolution Equations and Control Theory 2 (3) 441 (2013)
https://doi.org/10.3934/eect.2013.2.441

Advances in Interdisciplinary Mathematical Research

Sadou Tao and Ousseynou Nakoulima
Springer Proceedings in Mathematics & Statistics, Advances in Interdisciplinary Mathematical Research 37 167 (2013)
https://doi.org/10.1007/978-1-4614-6345-0_9

Null controllability of a parabolic equation involving the Grushin operator in some multi-dimensional domains

Cung The Anh and Vu Manh Toi
Nonlinear Analysis: Theory, Methods & Applications 93 181 (2013)
https://doi.org/10.1016/j.na.2013.08.003

Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods

Enrique Fernández-Cara and Arnaud Münch
Mathematical Control & Related Fields 2 (3) 217 (2012)
https://doi.org/10.3934/mcrf.2012.2.217

Numerical null controllability of a semi-linear heat equation via a least squares method

Enrique Fernández-Cara and Arnaud Münch
Comptes Rendus Mathematique 349 (15-16) 867 (2011)
https://doi.org/10.1016/j.crma.2011.07.014

Controllability of a Reaction-Diffusion System Describing Predator–Prey Model

K. Sakthivel, G. Devipriya, K. Balachandran and J.-H. Kim
Numerical Functional Analysis and Optimization 31 (7) 831 (2010)
https://doi.org/10.1080/01630563.2010.493128

Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems

Judith Vancostenoble
Discrete and Continuous Dynamical Systems - Series S 4 (3) 761 (2010)
https://doi.org/10.3934/dcdss.2011.4.761

Exact null controllability of a semilinear parabolic equation arising in finance

K. Sakthivel, G. Devipriya, K. Balachandran and J.-H. Kim
Nonlinear Analysis: Hybrid Systems 3 (4) 565 (2009)
https://doi.org/10.1016/j.nahs.2009.04.007

Null Controllability with Constraints on the State for the Semilinear Heat Equation

G. Massengo Mophou and O. Nakoulima
Journal of Optimization Theory and Applications 143 (3) 539 (2009)
https://doi.org/10.1007/s10957-009-9568-6

Null controllability of the complex Ginzburg–Landau equation

Lionel Rosier and Bing-Yu Zhang
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 26 (2) 649 (2009)
https://doi.org/10.1016/j.anihpc.2008.03.003

L p and L ∞ norm estimates of the cost of the controllability for heat equations

Pei Dong Lei, Xu Liu and Hang Gao
Acta Mathematica Sinica, English Series 25 (8) 1305 (2009)
https://doi.org/10.1007/s10114-009-7272-y

SOME RESULTS ON EXACT CONTROLLABILITY OF PARABOLIC SYSTEMS

Zhongcheng Zhou Zhongcheng Zhou, Ping Lin and Hang Gao
Taiwanese Journal of Mathematics 12 (3) (2008)
https://doi.org/10.11650/twjm/1500602426

Null controllability for a semilinear parabolic equation with gradient quadratic growth

Peidong Lei, Yanbo Li and Ping Lin
Nonlinear Analysis: Theory, Methods & Applications 68 (1) 73 (2008)
https://doi.org/10.1016/j.na.2006.10.032

Carleman Estimates for a Class of Degenerate Parabolic Operators

P. Cannarsa, P. Martinez and J. Vancostenoble
SIAM Journal on Control and Optimization 47 (1) 1 (2008)
https://doi.org/10.1137/04062062X

Bilinear control system with the reaction‐diffusion term satisfying Newton's law

P. Lin, P. Leid and H. Gao
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 87 (1) 14 (2007)
https://doi.org/10.1002/zamm.200510292

Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels

Ousseynou Nakoulima
ESAIM: Control, Optimisation and Calculus of Variations 13 (4) 623 (2007)
https://doi.org/10.1051/cocv:2007038

Some results on controllability of a nonlinear degenerate parabolic system by bilinear control

Ping Lin, Hang Gao and Xu Liu
Journal of Mathematical Analysis and Applications 326 (2) 1149 (2007)
https://doi.org/10.1016/j.jmaa.2006.03.079

Global Carleman Inequalities for Parabolic Systems and Applications to Controllability

Enrique Fernández‐Cara and Sergio Guerrero
SIAM Journal on Control and Optimization 45 (4) 1395 (2006)
https://doi.org/10.1137/S0363012904439696

Global Steady-State Controllability of One-Dimensional Semilinear Heat Equations

Jean-Michel Coron and Emmanuel Trélat
SIAM Journal on Control and Optimization 43 (2) 549 (2004)
https://doi.org/10.1137/S036301290342471X

Numerical experimentsregarding the distributed control of semilinear parabolic problems

J.I. Díaz and Á.M. Ramos
Computers & Mathematics with Applications 48 (10-11) 1575 (2004)
https://doi.org/10.1016/j.camwa.2004.04.033

Null controllability of the heat equation in unbounded domains by a finite measure control region

Piermarco Cannarsa, Patrick Martinez and Judith Vancostenoble
ESAIM: Control, Optimisation and Calculus of Variations 10 (3) 381 (2004)
https://doi.org/10.1051/cocv:2004010

Controllability to the Trajectories of Phase-Field Models by One Control Force

F. Ammar Khodja, A. Benabdallah, C. Dupaix and I. Kostin
SIAM Journal on Control and Optimization 42 (5) 1661 (2003)
https://doi.org/10.1137/S0363012902417826

Approximate Controllability of Semilinear Deterministic and Stochastic Evolution Equations in Abstract Spaces

Nazim I. Mahmudov
SIAM Journal on Control and Optimization 42 (5) 1604 (2003)
https://doi.org/10.1137/S0363012901391688

Global non-negative controllability of the semilinear parabolic equation governed by bilinear control

Alexander Y. Khapalov
ESAIM: Control, Optimisation and Calculus of Variations 7 269 (2002)
https://doi.org/10.1051/cocv:2002011

Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients

Anna Doubova, A. Osses and J.-P. Puel
ESAIM: Control, Optimisation and Calculus of Variations 8 621 (2002)
https://doi.org/10.1051/cocv:2002047

On the Controllability of Parabolic Systems with a Nonlinear Term Involving the State and the Gradient

A. Doubova, E. Fernández-Cara, M. González-Burgos and E. Zuazua
SIAM Journal on Control and Optimization 41 (3) 798 (2002)
https://doi.org/10.1137/S0363012901386465

Uniform null-controllability for the one-dimensional heat equation with rapidly oscillating periodic density

A. López and E. Zuazua
Annales de l'Institut Henri Poincare (C) Non Linear Analysis 19 (5) 543 (2002)
https://doi.org/10.1016/S0294-1449(01)00092-0

Exact null-controllability for the semilinear heat equation with superlinear term and mobile internal controls

Alexander Khapalov
Nonlinear Analysis: Theory, Methods & Applications 43 (6) 785 (2001)
https://doi.org/10.1016/S0362-546X(99)00235-7

Mobile Point Controls Versus Locally Distributed Ones for the Controllability of the Semilinear Parabolic Equation

Alexander Khapalov
SIAM Journal on Control and Optimization 40 (1) 231 (2001)
https://doi.org/10.1137/S0363012999358038

Null controllability of nonlinear convective heat equations

Sebastian Aniţa and Viorel Barbu
ESAIM: Control, Optimisation and Calculus of Variations 5 157 (2000)
https://doi.org/10.1051/cocv:2000105

Exact Boundary Controllability for the Linear Korteweg--de Vries Equation on the Half-Line

Lionel Rosier
SIAM Journal on Control and Optimization 39 (2) 331 (2000)
https://doi.org/10.1137/S0363012999353229

Null and approximate controllability for weakly blowing up semilinear heat equations

Enrique Fernández-Cara and Enrique Zuazua
Annales de l'Institut Henri Poincare (C) Non Linear Analysis 17 (5) 583 (2000)
https://doi.org/10.1016/S0294-1449(00)00117-7

Точная управляемость уравнений Навье - Стокса и Буссинеска

Andrei Vladimirovich Fursikov, Андрей Владимирович Фурсиков, Юрий Сергеевич Эмануилов and Yurii Sergeevich Emanuilov
Успехи математических наук 54 (3) 93 (1999)
https://doi.org/10.4213/rm153

Controllability results for discontinuous semilinear parabolic partial differential equations

Anna Dubova, Enrique Fernández-Cara and Manuel González-Burgos
Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326 (12) 1391 (1998)
https://doi.org/10.1016/S0764-4442(98)80398-4