Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Nontrivial Solutions for Fractional Schrödinger Equations with Electromagnetic Fields and Critical or Supercritical Growth

Quanqing Li, Jianjun Nie and Wenbo Wang
Qualitative Theory of Dynamical Systems 23 (2) (2024)
https://doi.org/10.1007/s12346-023-00928-3

Magnetic fractional Poincaré inequality in punctured domains

Kaushik Bal, Kaushik Mohanta and Prosenjit Roy
Journal of Mathematical Analysis and Applications 535 (1) 128103 (2024)
https://doi.org/10.1016/j.jmaa.2024.128103

On multiplicity and concentration for a magnetic Kirchhoff–Schrödinger equation involving critical exponents in $$\mathbb {R}^{2}$$

Xiaolu Lin and Shenzhou Zheng
Zeitschrift für angewandte Mathematik und Physik 75 (3) (2024)
https://doi.org/10.1007/s00033-024-02260-5

Long-time behavior for the Kirchhoff diffusion problem with magnetic fractional Laplace operator

Jiabin Zuo, Juliana Honda Lopes and Vicenţiu D. Rădulescu
Applied Mathematics Letters 150 108977 (2024)
https://doi.org/10.1016/j.aml.2023.108977

Critical fractional p -Kirchhoff type problem with a generalized Choquard nonlinearity and magnetic field

Wenjing Chen and Dongxue Feng
Complex Variables and Elliptic Equations 1 (2024)
https://doi.org/10.1080/17476933.2024.2336971

Critical Fractional (p, q)-Kirchhoff Type Problem with a Generalized Choquard Nonlinearity and Magnetic Field

Wenjing Chen and Dongxue Feng
Bulletin of the Malaysian Mathematical Sciences Society 47 (1) (2024)
https://doi.org/10.1007/s40840-023-01628-6

Ground states for fractional Choquard equations with doubly critical exponents and magnetic fields

Zhenyu Guo and Lujuan Zhao
Известия Российской академии наук. Серия математическая 88 (1) 47 (2024)
https://doi.org/10.4213/im9361

Existence and concentration of positive solutions for a fractional Schrödinger logarithmic equation

Li Wang, Shenghao Feng and Kun Cheng
Complex Variables and Elliptic Equations 69 (2) 317 (2024)
https://doi.org/10.1080/17476933.2022.2133110

Multiplicity and concentration results for fractional Kirchhoff equation with magnetic field

Weiqiang Zhang, Yanyun Wen and Peihao Zhao
Complex Variables and Elliptic Equations 69 (2) 349 (2024)
https://doi.org/10.1080/17476933.2022.2133111

Nehari manifold for a Schrödinger equation with magnetic potential involving sign-changing weight function

Francisco Odair de Paiva, Sandra Machado de Souza Lima and Olímpio Hiroshi Miyagaki
Applicable Analysis 103 (6) 1036 (2024)
https://doi.org/10.1080/00036811.2023.2230257

Semiclassical states for a magnetic nonlinear Schrödinger equation with exponential critical growth in ℝ2

Pietro d’Avenia and Chao Ji
Journal d'Analyse Mathématique (2023)
https://doi.org/10.1007/s11854-023-0312-1

On degenerate fractional Schrödinger–Kirchhoff–Poisson equations with upper critical nonlinearity and electromagnetic fields

Zhongyi Zhang and Dušan D. Repovš
Complex Variables and Elliptic Equations 68 (7) 1219 (2023)
https://doi.org/10.1080/17476933.2022.2040022

Existence and multiplicity of solutions to magnetic Kirchhoff equations in Orlicz-Sobolev spaces

Pablo Ochoa
Fractional Calculus and Applied Analysis 26 (2) 800 (2023)
https://doi.org/10.1007/s13540-023-00135-6

On inverse problems for uncoupled space-time fractional operators involving time-dependent coefficients

Li Li
Inverse Problems and Imaging (2023)
https://doi.org/10.3934/ipi.2023008

Existence of ground states for fractional Choquard–Kirchhoff equations with magnetic fields and critical exponents

Zhenyu Guo and Lujuan Zhao
Periodica Mathematica Hungarica 87 (2) 468 (2023)
https://doi.org/10.1007/s10998-023-00528-3

On a class of fractional Kirchhoff–Schrödinger–Poisson systems involving magnetic fields

Xiaolu Lin and Shenzhou Zheng
Communications in Nonlinear Science and Numerical Simulation 124 107312 (2023)
https://doi.org/10.1016/j.cnsns.2023.107312

Existence results for fractional Kirchhoff problems with magnetic field and supercritical growth

Liu Gao and Zhong Tan
Journal of Mathematical Physics 64 (3) (2023)
https://doi.org/10.1063/5.0127185

Fractional magnetic Schrödinger equations with potential vanishing at infinity and supercritical exponents

J.C. de Albuquerque and J.L. Santos
Complex Variables and Elliptic Equations 1 (2023)
https://doi.org/10.1080/17476933.2023.2280966

Multiplicity and Concentration of Solutions for a Fractional Magnetic Kirchhoff Equation with Competing Potentials

Shengbing Deng and Wenshan Luo
Annales Henri Poincaré (2023)
https://doi.org/10.1007/s00023-023-01372-4

Multiplicity results for fractional magnetic problems involving exponential growth

Manassés de Souza, João Marcos do Ó and Pawan K. Mishra
Mathematical Methods in the Applied Sciences 45 (5) 3098 (2022)
https://doi.org/10.1002/mma.7979

Existence of ground state solutions for critical fractional Choquard equations involving periodic magnetic field

Zhen-Feng Jin, Hong-Rui Sun and Jianjun Zhang
Advanced Nonlinear Studies 22 (1) 372 (2022)
https://doi.org/10.1515/ans-2022-0019

The Kirchhoff-type diffusion problem driven by a magnetic fractional Laplace operator

Jiabin Zuo and Juliana Honda Lopes
Journal of Mathematical Physics 63 (6) (2022)
https://doi.org/10.1063/5.0089480

Existence and multiplicity of solutions for nonlocal Schrödinger–Kirchhoff equations of convex–concave type with the external magnetic field

Seol Vin Kim and Yun-Ho Kim
AIMS Mathematics 7 (4) 6583 (2022)
https://doi.org/10.3934/math.2022367

The Multiplicity and Concentration of Positive Solutions for the Kirchhoff-Choquard Equation with Magnetic Fields

Li Wang, Kun Cheng and Jixiu Wang
Acta Mathematica Scientia 42 (4) 1453 (2022)
https://doi.org/10.1007/s10473-022-0411-6

Maz’ya–Shaposhnikova formula in magnetic fractional Orlicz–Sobolev spaces

Alberto Maione, Ariel M. Salort and Eugenio Vecchi
Asymptotic Analysis 126 (3-4) 201 (2022)
https://doi.org/10.3233/ASY-211677

Ground states for fractional Choquard equations with magnetic fields and critical exponents

Zhenyu Guo and Lujuan Zhao
Georgian Mathematical Journal 29 (5) 699 (2022)
https://doi.org/10.1515/gmj-2022-2175

Concentration phenomena for fractional magnetic NLS equations

Vincenzo Ambrosio
Proceedings of the Royal Society of Edinburgh: Section A Mathematics 152 (2) 479 (2022)
https://doi.org/10.1017/prm.2021.22

Sliding Methods for a Class of Generalized Fractional Laplacian Equations

Miao Sun and Baiyu Liu
Bulletin of the Malaysian Mathematical Sciences Society 45 (5) 2225 (2022)
https://doi.org/10.1007/s40840-022-01367-0

Degenerate Fractional Kirchhoff-Type System with Magnetic Fields and Upper Critical Growth

Mingzhe Sun, Shaoyun Shi and Dušan D. Repovš
Mediterranean Journal of Mathematics 19 (4) (2022)
https://doi.org/10.1007/s00009-022-02076-5

Ground state solution for a nonlinear fractional magnetic Schrödinger equation with indefinite potential

Na Cui and Hong-Rui Sun
Journal of Mathematical Physics 63 (9) (2022)
https://doi.org/10.1063/5.0082580

Semi-classical states for fractional Schrödinger equations with magnetic fields and fast decaying potentials

Xiaoming An and Xian Yang
Communications on Pure and Applied Analysis 21 (5) 1649 (2022)
https://doi.org/10.3934/cpaa.2022038

The nontrivial solutions for fractional Schrödinger–Poisson equations with magnetic fields and critical or supercritical growth

Lintao Liu and Haibo Chen
Applied Mathematics Letters 121 107358 (2021)
https://doi.org/10.1016/j.aml.2021.107358

Existence and multiplicity results for the fractional magnetic Schrödinger equations with critical growth

Ya-Hong Guo, Hong-Rui Sun and Na Cui
Journal of Mathematical Physics 62 (6) (2021)
https://doi.org/10.1063/5.0041372

POSITIVE SOLUTIONS FOR A FRACTIONAL MAGNETIC SCHRÖDINGER EQUATIONS WITH SINGULAR NONLINEARITY AND STEEP POTENTIAL

Longsheng Bao, Binxiang Dai and Siyi Zhang
Journal of Applied Analysis & Computation 11 (5) 2630 (2021)
https://doi.org/10.11948/20210156

Existence of entire solutions for critical Sobolev–Hardy problems involving magnetic fractional operator

Libo Yang, Jiabin Zuo and Tianqing An
Complex Variables and Elliptic Equations 66 (11) 1864 (2021)
https://doi.org/10.1080/17476933.2020.1788003

Multiplicity and concentration results for a fractional Schrödinger-Poisson type equation with magnetic field

Vincenzo Ambrosio
Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150 (2) 655 (2020)
https://doi.org/10.1017/prm.2018.153

Nonlinear perturbations of a periodic magnetic Choquard equation with Hardy–Littlewood–Sobolev critical exponent

H. Bueno, N. da Hora Lisboa and L. L. Vieira
Zeitschrift für angewandte Mathematik und Physik 71 (4) (2020)
https://doi.org/10.1007/s00033-020-01370-0

Some characterizations of magnetic Sobolev spaces

Hoai-Minh Nguyen, Andrea Pinamonti, Marco Squassina and Eugenio Vecchi
Complex Variables and Elliptic Equations 65 (7) 1104 (2020)
https://doi.org/10.1080/17476933.2018.1520850

Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity

Quanqing Li, Kaimin Teng, Wenbo Wang and Jian Zhang
Boundary Value Problems 2020 (1) (2020)
https://doi.org/10.1186/s13661-020-01409-1

Characterization of the traces on the boundary of functions in magnetic Sobolev spaces

Hoai-Minh Nguyen and Jean Van Schaftingen
Advances in Mathematics 371 107246 (2020)
https://doi.org/10.1016/j.aim.2020.107246

Multiplicity Results for Variable-Order Nonlinear Fractional Magnetic Schrödinger Equation with Variable Growth

Jianwen Zhou, Bianxiang Zhou and Yanning Wang
Journal of Function Spaces 2020 1 (2020)
https://doi.org/10.1155/2020/7817843

Multiplicity and Concentration Results for Fractional Schrödinger-Poisson Equations with Magnetic Fields and Critical Growth

Vincenzo Ambrosio
Potential Analysis 52 (4) 565 (2020)
https://doi.org/10.1007/s11118-018-9751-1

Existence and Multiplicity Solutions for the p$p$-Fractional Schrödinger–Kirchhoff Equations with Electromagnetic Fields and Critical Nonlinearity

Yueqiang Song and Shaoyun Shi
Acta Applicandae Mathematicae 165 (1) 45 (2020)
https://doi.org/10.1007/s10440-019-00240-w

Fractional magnetic Schrödinger‐Kirchhoff problems with convolution and critical nonlinearities

Sihua Liang, Dušan D. Repovš and Binlin Zhang
Mathematical Methods in the Applied Sciences 43 (5) 2473 (2020)
https://doi.org/10.1002/mma.6057

Ground States for Fractional Schrödinger Equations with Electromagnetic Fields and Critical Growth

Quanqing Li, Wenbo Wang, Kaimin Teng and Xian Wu
Acta Mathematica Scientia 40 (1) 59 (2020)
https://doi.org/10.1007/s10473-020-0105-0

Multiplicity results of nonlinear fractional magnetic Schrödinger equation with steep potential

Suzhen Mao and Aliang Xia
Applied Mathematics Letters 97 73 (2019)
https://doi.org/10.1016/j.aml.2019.05.027

Existence and multiplicity solutions for the p–fractional Schrödinger–Kirchhoff equations with electromagnetic fields and critical nonlinearity

Yueqiang Song and Shaoyun Shi
Complex Variables and Elliptic Equations 64 (7) 1163 (2019)
https://doi.org/10.1080/17476933.2018.1511707

Multiplicity and Concentration of Solutions for a Fractional Kirchhoff Equation with Magnetic Field and Critical Growth

Vincenzo Ambrosio
Annales Henri Poincaré 20 (8) 2717 (2019)
https://doi.org/10.1007/s00023-019-00803-5

Magnetic BV-functions and the Bourgain–Brezis–Mironescu formula

Andrea Pinamonti, Marco Squassina and Eugenio Vecchi
Advances in Calculus of Variations 12 (3) 225 (2019)
https://doi.org/10.1515/acv-2017-0019

Existence and concentration results for some fractional Schrödinger equations in RN with magnetic fields

Vincenzo Ambrosio
Communications in Partial Differential Equations 44 (8) 637 (2019)
https://doi.org/10.1080/03605302.2019.1581800

Fractional Hardy–Sobolev Inequalities with Magnetic Fields

Min Liu, Fengli Jiang and Zhenyu Guo
Advances in Mathematical Physics 2019 1 (2019)
https://doi.org/10.1155/2019/6595961

Decay estimates for evolution equations with classical and fractional time-derivatives

Elisa Affili and Enrico Valdinoci
Journal of Differential Equations 266 (7) 4027 (2019)
https://doi.org/10.1016/j.jde.2018.09.031

Infinitely many high energy solutions for fractional Schrödinger equations with magnetic field

Libo Yang, Tianqing An and Jiabin Zuo
Boundary Value Problems 2019 (1) (2019)
https://doi.org/10.1186/s13661-019-01309-z

Nonlinear fractional magnetic Schrödinger equation: Existence and multiplicity

Vincenzo Ambrosio and Pietro d'Avenia
Journal of Differential Equations 264 (5) 3336 (2018)
https://doi.org/10.1016/j.jde.2017.11.021

Boundedness and Decay of Solutions for Some Fractional Magnetic Schrödinger Equations in $${\mathbb{R}^N}$$ R N

Vincenzo Ambrosio
Milan Journal of Mathematics 86 (2) 125 (2018)
https://doi.org/10.1007/s00032-018-0283-3

Infinitely many solutions for magnetic fractional problems with critical Sobolev‐Hardy nonlinearities

Libo Yang and Tianqing An
Mathematical Methods in the Applied Sciences 41 (18) 9607 (2018)
https://doi.org/10.1002/mma.5317

On the fractional Schrödinger–Kirchhoff equations with electromagnetic fields and critical nonlinearity

Sihua Liang, Dušan Repovš and Binlin Zhang
Computers & Mathematics with Applications 75 (5) 1778 (2018)
https://doi.org/10.1016/j.camwa.2017.11.033

On concentration of least energy solutions for magnetic critical Choquard equations

T. Mukherjee and K. Sreenadh
Journal of Mathematical Analysis and Applications 464 (1) 402 (2018)
https://doi.org/10.1016/j.jmaa.2018.04.010

New characterizations of magnetic Sobolev spaces

Hoai-Minh Nguyen, Andrea Pinamonti, Marco Squassina and Eugenio Vecchi
Advances in Nonlinear Analysis 7 (2) 227 (2018)
https://doi.org/10.1515/anona-2017-0239

Fractional NLS equations with magnetic field, critical frequency and critical growth

Zhang Binlin, Marco Squassina and Zhang Xia
manuscripta mathematica 155 (1-2) 115 (2018)
https://doi.org/10.1007/s00229-017-0937-4

The Maz'ya–Shaposhnikova limit in the magnetic setting

Andrea Pinamonti, Marco Squassina and Eugenio Vecchi
Journal of Mathematical Analysis and Applications 449 (2) 1152 (2017)
https://doi.org/10.1016/j.jmaa.2016.12.065

Nonlocal Schrödinger-Kirchhoff equations with external magnetic field

Mingqi Xiang, Patrizia Pucci, Marco Squassina and Binlin Zhang
Discrete & Continuous Dynamical Systems - A 37 (3) 1631 (2017)
https://doi.org/10.3934/dcds.2017067