The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Pietro d’Avenia , Marco Squassina
ESAIM: COCV, 24 1 (2018) 1-24
Published online: 2017-09-28
This article has been cited by the following article(s):
83 articles
Multiplicity and Concentration of Solutions for a Fractional Magnetic Kirchhoff Equation with Competing Potentials
Shengbing Deng and Wenshan Luo Annales Henri Poincaré 25 (7) 3499 (2024) https://doi.org/10.1007/s00023-023-01372-4
Nontrivial Solutions for Fractional Schrödinger Equations with Electromagnetic Fields and Critical or Supercritical Growth
Quanqing Li, Jianjun Nie and Wenbo Wang Qualitative Theory of Dynamical Systems 23 (2) (2024) https://doi.org/10.1007/s12346-023-00928-3
Semiclassical states for a magnetic nonlinear Schrödinger equation with exponential critical growth in ℝ2
Pietro d’Avenia and Chao Ji Journal d'Analyse Mathématique 153 (1) 63 (2024) https://doi.org/10.1007/s11854-023-0312-1
Multi‐bump solutions for the nonlinear magnetic Schrödinger equation with logarithmic nonlinearity
Jun Wang and Zhaoyang Yin Mathematische Nachrichten (2024) https://doi.org/10.1002/mana.202400134
Kirchhoff‐type critical fractional Laplacian system with convolution and magnetic field
Sihua Liang and Binlin Zhang Mathematische Nachrichten 297 (7) 2667 (2024) https://doi.org/10.1002/mana.202200172
Nehari manifold for a Schrödinger equation with magnetic potential involving sign-changing weight function
Francisco Odair de Paiva, Sandra Machado de Souza Lima and Olímpio Hiroshi Miyagaki Applicable Analysis 103 (6) 1036 (2024) https://doi.org/10.1080/00036811.2023.2230257
Existence of Positive Solutions for Non-Local Magnetic Fractional Systems
Tahar Bouali, Rafik Guefaifia, Salah Boulaaras and Taha Radwan Fractal and Fractional 8 (7) 381 (2024) https://doi.org/10.3390/fractalfract8070381
Critical Fractional (p, q)-Kirchhoff Type Problem with a Generalized Choquard Nonlinearity and Magnetic Field
Wenjing Chen and Dongxue Feng Bulletin of the Malaysian Mathematical Sciences Society 47 (1) (2024) https://doi.org/10.1007/s40840-023-01628-6
On multiplicity and concentration for a magnetic Kirchhoff–Schrödinger equation involving critical exponents in $$\mathbb {R}^{2}$$
Xiaolu Lin and Shenzhou Zheng Zeitschrift für angewandte Mathematik und Physik 75 (3) (2024) https://doi.org/10.1007/s00033-024-02260-5
Asymptotically linear magnetic fractional problems
Rossella Bartolo, Pietro d’Avenia and Giovanni Molica Bisci Applied Mathematics Letters 151 109001 (2024) https://doi.org/10.1016/j.aml.2024.109001
Oleg Asipchuk, Christopher Leonard and Shijun Zheng 472 319 (2024) https://doi.org/10.1007/978-3-031-69710-4_14
Multiplicity and concentration results for fractional Kirchhoff equation with magnetic field
Weiqiang Zhang, Yanyun Wen and Peihao Zhao Complex Variables and Elliptic Equations 69 (2) 349 (2024) https://doi.org/10.1080/17476933.2022.2133111
Existence and concentration of positive solutions for a fractional Schrödinger logarithmic equation
Li Wang, Shenghao Feng and Kun Cheng Complex Variables and Elliptic Equations 69 (2) 317 (2024) https://doi.org/10.1080/17476933.2022.2133110
Long-time behavior for the Kirchhoff diffusion problem with magnetic fractional Laplace operator
Jiabin Zuo, Juliana Honda Lopes and Vicenţiu D. Rădulescu Applied Mathematics Letters 150 108977 (2024) https://doi.org/10.1016/j.aml.2023.108977
A Fractional Magnetic System with Critical Nonlinearities
Libo Yang, Shapour Heidarkhani and Jiabin Zuo Fractal and Fractional 8 (7) 380 (2024) https://doi.org/10.3390/fractalfract8070380
Multiplicity and concentration behavior of solutions for magnetic Choquard equation with critical growth
Houzhi Tang Zeitschrift für angewandte Mathematik und Physik 75 (5) (2024) https://doi.org/10.1007/s00033-024-02318-4
Critical fractional
p
-Kirchhoff type problem with a generalized Choquard nonlinearity and magnetic field
Wenjing Chen and Dongxue Feng Complex Variables and Elliptic Equations 1 (2024) https://doi.org/10.1080/17476933.2024.2336971
Ground states for fractional Choquard equations with doubly critical exponents and magnetic fields
Zhenyu Guo and Lujuan Zhao Известия Российской академии наук. Серия математическая 88 (1) 47 (2024) https://doi.org/10.4213/im9361
Magnetic fractional Poincaré inequality in punctured domains
Kaushik Bal, Kaushik Mohanta and Prosenjit Roy Journal of Mathematical Analysis and Applications 535 (1) 128103 (2024) https://doi.org/10.1016/j.jmaa.2024.128103
Fractional magnetic Schrödinger equations with potential vanishing at infinity and supercritical exponents
J.C. de Albuquerque and J.L. Santos Complex Variables and Elliptic Equations 69 (12) 2094 (2024) https://doi.org/10.1080/17476933.2023.2280966
Existence and multiplicity of solutions to magnetic Kirchhoff equations in Orlicz-Sobolev spaces
Pablo Ochoa Fractional Calculus and Applied Analysis 26 (2) 800 (2023) https://doi.org/10.1007/s13540-023-00135-6
On a class of fractional Kirchhoff–Schrödinger–Poisson systems involving magnetic fields
Xiaolu Lin and Shenzhou Zheng Communications in Nonlinear Science and Numerical Simulation 124 107312 (2023) https://doi.org/10.1016/j.cnsns.2023.107312
An inverse problem for the non-linear fractional magnetic Schrödinger equation
Ru-Yu Lai and Ting Zhou Journal of Differential Equations 343 64 (2023) https://doi.org/10.1016/j.jde.2022.09.033
Existence of ground states for fractional Choquard–Kirchhoff equations with magnetic fields and critical exponents
Zhenyu Guo and Lujuan Zhao Periodica Mathematica Hungarica 87 (2) 468 (2023) https://doi.org/10.1007/s10998-023-00528-3
Existence results for fractional Kirchhoff problems with magnetic field and supercritical growth
Liu Gao and Zhong Tan Journal of Mathematical Physics 64 (3) (2023) https://doi.org/10.1063/5.0127185
On degenerate fractional Schrödinger–Kirchhoff–Poisson equations with upper critical nonlinearity and electromagnetic fields
Zhongyi Zhang and Dušan D. Repovš Complex Variables and Elliptic Equations 68 (7) 1219 (2023) https://doi.org/10.1080/17476933.2022.2040022
On inverse problems for uncoupled space-time fractional operators involving time-dependent coefficients
Li Li Inverse Problems and Imaging (2023) https://doi.org/10.3934/ipi.2023008
On the critical fractional Schrödinger-Kirchhoff-Poisson equations with electromagnetic fields
Zhongyi Zhang Open Mathematics 20 (1) 878 (2022) https://doi.org/10.1515/math-2022-0471
Existence of ground state solutions for critical fractional Choquard equations involving periodic magnetic field
Zhen-Feng Jin, Hong-Rui Sun and Jianjun Zhang Advanced Nonlinear Studies 22 (1) 372 (2022) https://doi.org/10.1515/ans-2022-0019
Degenerate Fractional Kirchhoff-Type System with Magnetic Fields and Upper Critical Growth
Mingzhe Sun, Shaoyun Shi and Dušan D. Repovš Mediterranean Journal of Mathematics 19 (4) (2022) https://doi.org/10.1007/s00009-022-02076-5
Semi-classical states for fractional Schrödinger equations with magnetic fields and fast decaying potentials
Xiaoming An and Xian Yang Communications on Pure and Applied Analysis 21 (5) 1649 (2022) https://doi.org/10.3934/cpaa.2022038
Maz’ya–Shaposhnikova formula in magnetic fractional Orlicz–Sobolev spaces
Alberto Maione, Ariel M. Salort and Eugenio Vecchi Asymptotic Analysis 126 (3-4) 201 (2022) https://doi.org/10.3233/ASY-211677
The Kirchhoff-type diffusion problem driven by a magnetic fractional Laplace operator
Jiabin Zuo and Juliana Honda Lopes Journal of Mathematical Physics 63 (6) (2022) https://doi.org/10.1063/5.0089480
Multiplicity Results of Solutions to Non-Local Magnetic Schrödinger–Kirchhoff Type Equations in RN
Kisoeb Park Axioms 11 (2) 38 (2022) https://doi.org/10.3390/axioms11020038
The Multiplicity and Concentration of Positive Solutions for the Kirchhoff-Choquard Equation with Magnetic Fields
Li Wang, Kun Cheng and Jixiu Wang Acta Mathematica Scientia 42 (4) 1453 (2022) https://doi.org/10.1007/s10473-022-0411-6
Existence and multiplicity of solutions for nonlocal Schrödinger–Kirchhoff equations of convex–concave type with the external magnetic field
Seol Vin Kim and Yun-Ho Kim AIMS Mathematics 7 (4) 6583 (2022) https://doi.org/10.3934/math.2022367
Multiplicity results for fractional magnetic problems involving exponential growth
Manassés de Souza, João Marcos do Ó and Pawan K. Mishra Mathematical Methods in the Applied Sciences 45 (5) 3098 (2022) https://doi.org/10.1002/mma.7979
Concentration phenomena for fractional magnetic NLS equations
Vincenzo Ambrosio Proceedings of the Royal Society of Edinburgh: Section A Mathematics 152 (2) 479 (2022) https://doi.org/10.1017/prm.2021.22
Ground state solution for a nonlinear fractional magnetic Schrödinger equation with indefinite potential
Na Cui and Hong-Rui Sun Journal of Mathematical Physics 63 (9) (2022) https://doi.org/10.1063/5.0082580
Sliding Methods for a Class of Generalized Fractional Laplacian Equations
Miao Sun and Baiyu Liu Bulletin of the Malaysian Mathematical Sciences Society 45 (5) 2225 (2022) https://doi.org/10.1007/s40840-022-01367-0
Ground states for fractional Choquard equations with magnetic fields and critical exponents
Zhenyu Guo and Lujuan Zhao Georgian Mathematical Journal 29 (5) 699 (2022) https://doi.org/10.1515/gmj-2022-2175
Nonlinear Fractional Schrödinger Equations in R^N
Vincenzo Ambrosio Frontiers in Mathematics, Nonlinear Fractional Schrödinger Equations in R^N 553 (2021) https://doi.org/10.1007/978-3-030-60220-8_17
Multiplicity for FractionalSchrO¨ dinger Equation with Magnetic Fields and Critical Growth
安妮 姚 Pure Mathematics 11 (04) 527 (2021) https://doi.org/10.12677/PM.2021.114066
The nontrivial solutions for fractional Schrödinger–Poisson equations with magnetic fields and critical or supercritical growth
Lintao Liu and Haibo Chen Applied Mathematics Letters 121 107358 (2021) https://doi.org/10.1016/j.aml.2021.107358
Existence of entire solutions for critical Sobolev–Hardy problems involving magnetic fractional operator
Libo Yang, Jiabin Zuo and Tianqing An Complex Variables and Elliptic Equations 66 (11) 1864 (2021) https://doi.org/10.1080/17476933.2020.1788003
On an inverse problem for a fractional semilinear elliptic equation involving a magnetic potential
Li Li Journal of Differential Equations 296 170 (2021) https://doi.org/10.1016/j.jde.2021.06.003
Existence and multiplicity results for the fractional magnetic Schrödinger equations with critical growth
Ya-Hong Guo, Hong-Rui Sun and Na Cui Journal of Mathematical Physics 62 (6) (2021) https://doi.org/10.1063/5.0041372
Determining the magnetic potential in the fractional magnetic Calderón problem
Li Li Communications in Partial Differential Equations 46 (6) 1017 (2021) https://doi.org/10.1080/03605302.2020.1857406
POSITIVE SOLUTIONS FOR A FRACTIONAL MAGNETIC SCHRÖDINGER EQUATIONS WITH SINGULAR NONLINEARITY AND STEEP POTENTIAL
Longsheng Bao, Binxiang Dai and Siyi Zhang Journal of Applied Analysis & Computation 11 (5) 2630 (2021) https://doi.org/10.11948/20210156
Nonlinear perturbations of a periodic magnetic Choquard equation with Hardy–Littlewood–Sobolev critical exponent
H. Bueno, N. da Hora Lisboa and L. L. Vieira Zeitschrift für angewandte Mathematik und Physik 71 (4) (2020) https://doi.org/10.1007/s00033-020-01370-0
Characterization of the traces on the boundary of functions in magnetic Sobolev spaces
Hoai-Minh Nguyen and Jean Van Schaftingen Advances in Mathematics 371 107246 (2020) https://doi.org/10.1016/j.aim.2020.107246
Fractional magnetic Schrödinger‐Kirchhoff problems with convolution and critical nonlinearities
Sihua Liang, Dušan D. Repovš and Binlin Zhang Mathematical Methods in the Applied Sciences 43 (5) 2473 (2020) https://doi.org/10.1002/mma.6057
A local mountain pass approach for a class of fractional NLS equations with magnetic fields
Vincenzo Ambrosio Nonlinear Analysis 190 111622 (2020) https://doi.org/10.1016/j.na.2019.111622
Existence and Multiplicity Solutions for the p$p$-Fractional Schrödinger–Kirchhoff Equations with Electromagnetic Fields and Critical Nonlinearity
Yueqiang Song and Shaoyun Shi Acta Applicandae Mathematicae 165 (1) 45 (2020) https://doi.org/10.1007/s10440-019-00240-w
Multiplicity and Concentration Results for Fractional Schrödinger-Poisson Equations with Magnetic Fields and Critical Growth
Vincenzo Ambrosio Potential Analysis 52 (4) 565 (2020) https://doi.org/10.1007/s11118-018-9751-1
Multiplicity Results for Variable-Order Nonlinear Fractional Magnetic Schrödinger Equation with Variable Growth
Jianwen Zhou, Bianxiang Zhou and Yanning Wang Journal of Function Spaces 2020 1 (2020) https://doi.org/10.1155/2020/7817843
Multiplicity and concentration results for a fractional Schrödinger-Poisson type equation with magnetic field
Vincenzo Ambrosio Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150 (2) 655 (2020) https://doi.org/10.1017/prm.2018.153
The Calderón problem for the fractional magnetic operator
Li Li Inverse Problems 36 (7) 075003 (2020) https://doi.org/10.1088/1361-6420/ab8445
A Class of Critical Magnetic Fractional Kirchhoff Problems
Jiabin Zuo, Tianqing An and Guoju Ye Symmetry 12 (1) 76 (2020) https://doi.org/10.3390/sym12010076
Existence of nontrivial solutions for fractional Schrödinger equations with electromagnetic fields and critical or supercritical nonlinearity
Quanqing Li, Kaimin Teng, Wenbo Wang and Jian Zhang Boundary Value Problems 2020 (1) (2020) https://doi.org/10.1186/s13661-020-01409-1
Some characterizations of magnetic Sobolev spaces
Hoai-Minh Nguyen, Andrea Pinamonti, Marco Squassina and Eugenio Vecchi Complex Variables and Elliptic Equations 65 (7) 1104 (2020) https://doi.org/10.1080/17476933.2018.1520850
Ground States for Fractional Schrödinger Equations with Electromagnetic Fields and Critical Growth
Quanqing Li, Wenbo Wang, Kaimin Teng and Xian Wu Acta Mathematica Scientia 40 (1) 59 (2020) https://doi.org/10.1007/s10473-020-0105-0
Multiplicity and concentration results for magnetic relativistic Schrödinger equations
Aliang Xia Advances in Nonlinear Analysis 9 (1) 1161 (2019) https://doi.org/10.1515/anona-2020-0044
Decay estimates for evolution equations with classical and fractional time-derivatives
Elisa Affili and Enrico Valdinoci Journal of Differential Equations 266 (7) 4027 (2019) https://doi.org/10.1016/j.jde.2018.09.031
On a fractional magnetic Schrödinger equation in R with exponential critical growth
Vincenzo Ambrosio Nonlinear Analysis 183 117 (2019) https://doi.org/10.1016/j.na.2019.01.016
Ground state solutions for the non-linear fractional Schrödinger–Poisson system
Kaimin Teng Applicable Analysis 98 (11) 1959 (2019) https://doi.org/10.1080/00036811.2018.1441998
Existence and multiplicity solutions for the p–fractional Schrödinger–Kirchhoff equations with electromagnetic fields and critical nonlinearity
Yueqiang Song and Shaoyun Shi Complex Variables and Elliptic Equations 64 (7) 1163 (2019) https://doi.org/10.1080/17476933.2018.1511707
Multiplicity and Concentration of Solutions for a Fractional Kirchhoff Equation with Magnetic Field and Critical Growth
Vincenzo Ambrosio Annales Henri Poincaré 20 (8) 2717 (2019) https://doi.org/10.1007/s00023-019-00803-5
Multiplicity results of nonlinear fractional magnetic Schrödinger equation with steep potential
Suzhen Mao and Aliang Xia Applied Mathematics Letters 97 73 (2019) https://doi.org/10.1016/j.aml.2019.05.027
Existence and concentration results for some fractional Schrödinger equations in RN with magnetic fields
Vincenzo Ambrosio Communications in Partial Differential Equations 44 (8) 637 (2019) https://doi.org/10.1080/03605302.2019.1581800
Infinitely many high energy solutions for fractional Schrödinger equations with magnetic field
Libo Yang, Tianqing An and Jiabin Zuo Boundary Value Problems 2019 (1) (2019) https://doi.org/10.1186/s13661-019-01309-z
Magnetic BV-functions and the Bourgain–Brezis–Mironescu formula
Andrea Pinamonti, Marco Squassina and Eugenio Vecchi Advances in Calculus of Variations 12 (3) 225 (2019) https://doi.org/10.1515/acv-2017-0019
Fractional Hardy–Sobolev Inequalities with Magnetic Fields
Min Liu, Fengli Jiang and Zhenyu Guo Advances in Mathematical Physics 2019 1 (2019) https://doi.org/10.1155/2019/6595961
Nonlinear fractional magnetic Schrödinger equation: Existence and multiplicity
Vincenzo Ambrosio and Pietro d'Avenia Journal of Differential Equations 264 (5) 3336 (2018) https://doi.org/10.1016/j.jde.2017.11.021
Fractional NLS equations with magnetic field, critical frequency and critical growth
Zhang Binlin, Marco Squassina and Zhang Xia manuscripta mathematica 155 (1-2) 115 (2018) https://doi.org/10.1007/s00229-017-0937-4
On concentration of least energy solutions for magnetic critical Choquard equations
T. Mukherjee and K. Sreenadh Journal of Mathematical Analysis and Applications 464 (1) 402 (2018) https://doi.org/10.1016/j.jmaa.2018.04.010
On the fractional Schrödinger–Kirchhoff equations with electromagnetic fields and critical nonlinearity
Sihua Liang, Dušan Repovš and Binlin Zhang Computers & Mathematics with Applications 75 (5) 1778 (2018) https://doi.org/10.1016/j.camwa.2017.11.033
Boundedness and Decay of Solutions for Some Fractional Magnetic Schrödinger Equations in $${\mathbb{R}^N}$$ R N
Vincenzo Ambrosio Milan Journal of Mathematics 86 (2) 125 (2018) https://doi.org/10.1007/s00032-018-0283-3
New characterizations of magnetic Sobolev spaces
Hoai-Minh Nguyen, Andrea Pinamonti, Marco Squassina and Eugenio Vecchi Advances in Nonlinear Analysis 7 (2) 227 (2018) https://doi.org/10.1515/anona-2017-0239
Infinitely many solutions for magnetic fractional problems with critical Sobolev‐Hardy nonlinearities
Libo Yang and Tianqing An Mathematical Methods in the Applied Sciences 41 (18) 9607 (2018) https://doi.org/10.1002/mma.5317
Nonlocal Schrödinger-Kirchhoff equations with external magnetic field
Mingqi Xiang, Patrizia Pucci, Marco Squassina and Binlin Zhang Discrete & Continuous Dynamical Systems - A 37 (3) 1631 (2017) https://doi.org/10.3934/dcds.2017067
Logarithmic Sobolev inequality revisited
Hoai-Minh Nguyen and Marco Squassina Comptes Rendus Mathematique 355 (4) 447 (2017) https://doi.org/10.1016/j.crma.2017.02.009
The Maz'ya–Shaposhnikova limit in the magnetic setting
Andrea Pinamonti, Marco Squassina and Eugenio Vecchi Journal of Mathematical Analysis and Applications 449 (2) 1152 (2017) https://doi.org/10.1016/j.jmaa.2016.12.065