Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A hybrid technique for solving fractional delay variational problems by the shifted Legendre polynomials

Hasnaa F. Mohammed and Osama H. Mohammed
Partial Differential Equations in Applied Mathematics 9 100635 (2024)
https://doi.org/10.1016/j.padiff.2024.100635

The Hybrid Maximum Principle for Optimal Control Problems with Spatially Heterogeneous Dynamics is a Consequence of a Pontryagin Maximum Principle for \(\boldsymbol{\textrm{L}}^{\boldsymbol{1}}_{\boldsymbol{\square }}\)-Local Solutions

Térence Bayen, Anas Bouali and Loïc Bourdin
SIAM Journal on Control and Optimization 62 (4) 2412 (2024)
https://doi.org/10.1137/23M155311X

Analytic solution of a fractional-order hepatitis model using Laplace Adomian decomposition method and optimal control analysis

Nnaemeka S. Aguegboh, Phineas Roy Kiogora, Mutua Felix, Walter Okongo and Boubacar Diallo
Computational and Mathematical Biophysics 12 (1) (2024)
https://doi.org/10.1515/cmb-2023-0114

Минимаксные решения уравнений Гамильтона-Якоби в задачах динамической оптимизации наследственных систем

Mikhail Igorevich Gomoyunov and Nikolai Yur'evich Lukoyanov
Успехи математических наук 79 (2(476)) 43 (2024)
https://doi.org/10.4213/rm10166

Minimax solutions of Hamilton-Jacobi equations in dynamic optimization problems for hereditary systems

Mikhail Igorevich Gomoyunov and Nikolai Yur'evich Lukoyanov
Russian Mathematical Surveys 79 (2) 229 (2024)
https://doi.org/10.4213/rm10166e

A mathematical model with fractional-order dynamics for the combined treatment of metastatic colorectal cancer

David Amilo, Khadijeh Sadri, Bilgen Kaymakamzade and Evren Hincal
Communications in Nonlinear Science and Numerical Simulation 130 107756 (2024)
https://doi.org/10.1016/j.cnsns.2023.107756

The infinite-dimensional Pontryagin maximum principle for optimal control problems of fractional evolution equations with endpoint state constraints

Yuna Oh and Jun Moon
AIMS Mathematics 9 (3) 6109 (2024)
https://doi.org/10.3934/math.2024299

Controllability of time-varying fractional dynamical systems

S. M. Sivalingam, M. Vellappandi, V. Govindaraj, Ibrahim Alraddadi, Faisal Alsharif and Hijaz Ahmad
Journal of Taibah University for Science 18 (1) (2024)
https://doi.org/10.1080/16583655.2024.2399378

Robust optimal control of nonlinear fractional systems

Chongyang Liu, Tuo Zhou, Zhaohua Gong, Xiaopeng Yi, Kok Lay Teo and Song Wang
Chaos, Solitons & Fractals 175 113964 (2023)
https://doi.org/10.1016/j.chaos.2023.113964

On the Relationship Between the Pontryagin Maximum Principle and the Hamilton–Jacobi–Bellman Equation in Optimal Control Problems for Fractional-Order Systems

M. I. Gomoyunov
Дифференциальные уравнения 59 (11) 1515 (2023)
https://doi.org/10.31857/S0374064123110067

Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems

Faïçal Ndaïrou and Delfim F. M. Torres
Mathematics 11 (19) 4218 (2023)
https://doi.org/10.3390/math11194218

Variational Problems Involving a Generalized Fractional Derivative with Dependence on the Mittag–Leffler Function

Ricardo Almeida
Fractal and Fractional 7 (6) 477 (2023)
https://doi.org/10.3390/fractalfract7060477

On the Relationship Between the Pontryagin Maximum Principle and the Hamilton–Jacobi–Bellman Equation in Optimal Control Problems for Fractional-Order Systems

M. I. Gomoyunov
Differential Equations 59 (11) 1520 (2023)
https://doi.org/10.1134/S0012266123011006X

Global stabilization of uncertain nonlinear systems via fractional-order PID

Song Chen, Tehuan Chen, Jian Chu and Chao Xu
Communications in Nonlinear Science and Numerical Simulation 116 106838 (2023)
https://doi.org/10.1016/j.cnsns.2022.106838

Some necessary optimality conditions for systems with fractional Caputo derivatives

Shakir Sh. Yusubov and Elimhan N. Mahmudov
Journal of Industrial and Management Optimization (2023)
https://doi.org/10.3934/jimo.2023063

Operator theoretic approach in fractional‐order delay optimal control problems

Madasamy Vellappandi and Venkatesan Govindaraj
Mathematical Methods in the Applied Sciences 46 (6) 6529 (2023)
https://doi.org/10.1002/mma.8922

Optimal control of a fractional smoking system

Chongyang Liu, Wenjuan Sun and Xiaopeng Yi
Journal of Industrial and Management Optimization 19 (4) 2936 (2023)
https://doi.org/10.3934/jimo.2022071

On Cauchy Problems of Caputo Fractional Differential Inclusion with an Application to Fractional Non-Smooth Systems

Jimin Yu, Zeming Zhao and Yabin Shao
Mathematics 11 (3) 653 (2023)
https://doi.org/10.3390/math11030653

On the Maximum Principle for Optimal Control Problems of Stochastic Volterra Integral Equations with Delay

Yushi Hamaguchi
Applied Mathematics & Optimization 87 (3) (2023)
https://doi.org/10.1007/s00245-022-09958-w

Optimality conditions of singular controls for systems with Caputo fractional derivatives

Shakir Sh. Yusubov and Elimhan N. Mahmudov
Journal of Industrial and Management Optimization 19 (1) 246 (2023)
https://doi.org/10.3934/jimo.2021182

Optimal control study on Michaelis–Menten kinetics — A fractional version

Kokila J., Vellappandi M., Meghana D. and Govindaraj V.
Mathematics and Computers in Simulation 210 571 (2023)
https://doi.org/10.1016/j.matcom.2023.03.033

Numerical Fractional Optimal Control of Respiratory Syncytial Virus Infection in Octave/MATLAB

Silvério Rosa and Delfim F. M. Torres
Mathematics 11 (6) 1511 (2023)
https://doi.org/10.3390/math11061511

A Pontryagin maximum principle for terminal state-constrained optimal control problems of Volterra integral equations with singular kernels

Jun Moon
AIMS Mathematics 8 (10) 22924 (2023)
https://doi.org/10.3934/math.20231166

On differentiability of solutions of fractional differential equations with respect to initial data

Mikhail I. Gomoyunov
Fractional Calculus and Applied Analysis 25 (4) 1484 (2022)
https://doi.org/10.1007/s13540-022-00072-w

Herglotz Variational Problems Involving Distributed-Order Fractional Derivatives with Arbitrary Smooth Kernels

Fátima Cruz, Ricardo Almeida and Natália Martins
Fractal and Fractional 6 (12) 731 (2022)
https://doi.org/10.3390/fractalfract6120731

Optimal Control of Nonlinear Fractional-Order Systems with Multiple Time-Varying Delays

Chongyang Liu, Zhaohua Gong, Kok Lay Teo and Song Wang
Journal of Optimization Theory and Applications 193 (1-3) 856 (2022)
https://doi.org/10.1007/s10957-021-01935-7

Algorithm for Solving the Problem of Optimal Control of a Chemical-Technological Process with Terminal Constraints

Evgeniya V. Antipina, Svetlana A. Mustafina, Andrey F. Antipin and Nikolay D. Morozkin
Engineering Technologies and Systems 32 (3) 410 (2022)
https://doi.org/10.15507/2658-4123.032.202203.410-422

The application of a universal separating vector lemma to optimal sampled-data control problems with nonsmooth Mayer cost function

Samir Adly, Loïc Bourdin and Gaurav Dhar
Mathematical Control and Related Fields (2022)
https://doi.org/10.3934/mcrf.2022039

Legendre’s Necessary Condition for Fractional Bolza Functionals with Mixed Initial/Final Constraints

Loïc Bourdin and Rui A. C. Ferreira
Journal of Optimization Theory and Applications 190 (2) 672 (2021)
https://doi.org/10.1007/s10957-021-01908-w

Variational Problems with Time Delay and Higher-Order Distributed-Order Fractional Derivatives with Arbitrary Kernels

Fátima Cruz, Ricardo Almeida and Natália Martins
Mathematics 9 (14) 1665 (2021)
https://doi.org/10.3390/math9141665

Pontryagin Maximum Principle for Distributed-Order Fractional Systems

Faïçal Ndaïrou and Delfim F. M. Torres
Mathematics 9 (16) 1883 (2021)
https://doi.org/10.3390/math9161883

Legendre wavelet collocation method for fractional optimal control problems with fractional Bolza cost

Nitin Kumar and Mani Mehra
Numerical Methods for Partial Differential Equations 37 (2) 1693 (2021)
https://doi.org/10.1002/num.22604

Dynamic Programming Principle and Hamilton--Jacobi--Bellman Equations for Fractional-Order Systems

Mikhail I. Gomoyunov
SIAM Journal on Control and Optimization 58 (6) 3185 (2020)
https://doi.org/10.1137/19M1279368

Continuity/constancy of the Hamiltonian function in a Pontryagin maximum principle for optimal sampled-data control problems with free sampling times

Loïc Bourdin and Gaurav Dhar
Mathematics of Control, Signals, and Systems 31 (4) 503 (2019)
https://doi.org/10.1007/s00498-019-00247-6