Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Stabilization of 2D Navier–Stokes Equations by Means of Actuators with Locally Supported Vorticity

Sérgio S. Rodrigues and Dagmawi A. Seifu
Journal of Dynamical and Control Systems 30 (1) (2024)
https://doi.org/10.1007/s10883-023-09677-7

Droplet impact simulation with Cahn–Hilliard phase field method coupling Navier-slip boundary and dynamic contact angle model

Zunru Fu, Haichuan Jin, Guice Yao and Dongsheng Wen
Physics of Fluids 36 (4) (2024)
https://doi.org/10.1063/5.0202604

A Boundary Control Problem for Stochastic 2D-Navier–Stokes Equations

Nikolai Chemetov and Fernanda Cipriano
Journal of Optimization Theory and Applications 203 (2) 1847 (2024)
https://doi.org/10.1007/s10957-024-02416-3

Small-time global approximate controllability for incompressible MHD with coupled Navier slip boundary conditions

Manuel Rissel and Ya-Guang Wang
Journal de Mathématiques Pures et Appliquées 190 103601 (2024)
https://doi.org/10.1016/j.matpur.2024.103601

Slip with friction boundary conditions for the Navier–Stokes-α turbulence model and the effects of the friction on the reattachment point

Özgül İlhan
International Journal of Non-Linear Mechanics 159 104614 (2024)
https://doi.org/10.1016/j.ijnonlinmec.2023.104614

Quelques résultats sur la commandabilité et la stabilisation des systèmes non linéaires

Jean-Michel Coron
Journées mathématiques X-UPS 127 (2024)
https://doi.org/10.5802/xups.1999-02

Global Controllability of the Boussinesq System with Navier-Slip-with-Friction and Robin Boundary Conditions

F. W. Chaves-Silva, E. Fernández-Cara, K. Le Balc’h, J. L. F. Machado and D. A. Souza
SIAM Journal on Control and Optimization 61 (2) 484 (2023)
https://doi.org/10.1137/21M1425566

On uniform controllability of 1D transport equations in the vanishing viscosity limit

Camille Laurent and Matthieu Léautaud
Comptes Rendus. Mathématique 361 (G1) 265 (2023)
https://doi.org/10.5802/crmath.405

A 3D Non-Stationary Boussinesq System with Navier-slip Boundary Conditions

Exequiel Mallea-Zepeda and Raul Nina-Mollisaca
Bulletin of the Brazilian Mathematical Society, New Series 53 (4) 1331 (2022)
https://doi.org/10.1007/s00574-022-00307-7

Control Problem Related to 2D Stokes Equations with Variable Density and Viscosity

Evgenii S. Baranovskii, Eber Lenes, Exequiel Mallea-Zepeda, Jonnathan Rodríguez and Lautaro Vásquez
Symmetry 13 (11) 2050 (2021)
https://doi.org/10.3390/sym13112050

Remote trajectory tracking of rigid bodies immersed in a two-dimensional perfect incompressible fluid

Olivier Glass, József J. Kolumbán and Franck Sueur
Pure and Applied Analysis 3 (4) 613 (2021)
https://doi.org/10.2140/paa.2021.3.613

A Proof of Approximate Controllability of the 3D Navier--Stokes System via a Linear Test

Vahagn Nersesyan
SIAM Journal on Control and Optimization 59 (4) 2411 (2021)
https://doi.org/10.1137/20M1368689

Small-time global stabilization of the viscous Burgers equation with three scalar controls

Jean-Michel Coron and Shengquan Xiang
Journal de Mathématiques Pures et Appliquées 151 212 (2021)
https://doi.org/10.1016/j.matpur.2021.03.001

On uniform observability of gradient flows in the vanishing viscosity limit

Camille Laurent and Matthieu Léautaud
Journal de l’École polytechnique — Mathématiques 8 439 (2021)
https://doi.org/10.5802/jep.151

A 3D Non-Stationary Micropolar Fluids Equations with Navier Slip Boundary Conditions

Cristian Duarte-Leiva, Sebastián Lorca and Exequiel Mallea-Zepeda
Symmetry 13 (8) 1348 (2021)
https://doi.org/10.3390/sym13081348

Control at a distance of the motion of a rigid body immersed in a two-dimensional viscous incompressible fluid

József J. Kolumbán
Journal of Differential Equations 269 (1) 764 (2020)
https://doi.org/10.1016/j.jde.2019.12.021

Uniform Controllability of a Stokes Problem with a Transport Term in the Zero-Diffusion Limit

Jon Asier Bárcena-Petisco
SIAM Journal on Control and Optimization 58 (3) 1597 (2020)
https://doi.org/10.1137/19M1252004

External boundary control of the motion of a rigid body immersed in a perfect two-dimensional fluid

Olivier Glass, József J. Kolumbán and Franck Sueur
Analysis & PDE 13 (3) 651 (2020)
https://doi.org/10.2140/apde.2020.13.651

Local Exact Boundary Controllability for the Compressible Navier--Stokes Equations

Nicolás Molina
SIAM Journal on Control and Optimization 57 (3) 2152 (2019)
https://doi.org/10.1137/17M1127648

Singular Perturbations and Boundary Layers

Gung-Min Gie, Makram Hamouda, Chang-Yeol Jung and Roger M. Temam
Applied Mathematical Sciences, Singular Perturbations and Boundary Layers 200 307 (2018)
https://doi.org/10.1007/978-3-030-00638-9_7

Local boundary controllability to trajectories for the 1d compressible Navier Stokes equations

Sylvain Ervedoza and Marc Savel
ESAIM: Control, Optimisation and Calculus of Variations 24 (1) 211 (2018)
https://doi.org/10.1051/cocv/2017008

Local null controllability of the N-dimensional Navier–Stokes system with nonlinear Navier-slip boundary conditions and N − 1 scalar controls

Sergio Guerrero and Cristhian Montoya
Journal de Mathématiques Pures et Appliquées 113 37 (2018)
https://doi.org/10.1016/j.matpur.2018.03.004

Boundary Control for Optimal Mixing via Navier--Stokes Flows

Weiwei Hu and Jiahong Wu
SIAM Journal on Control and Optimization 56 (4) 2768 (2018)
https://doi.org/10.1137/17M1148049

Remarks concerning the approximate controllability of the 3D Navier–Stokes and Boussinesq systems

Enrique Fernández-Cara, Ivaldo T. De Sousa and Franciane B. Viera
SeMA Journal 74 (3) 237 (2017)
https://doi.org/10.1007/s40324-017-0111-7

Lagrangian Controllability of the 1-Dimensional Korteweg--de Vries Equation

Ludovick Gagnon
SIAM Journal on Control and Optimization 54 (6) 3152 (2016)
https://doi.org/10.1137/140964783

On the convergence of the two-dimensional second grade fluid model to the Navier–Stokes equation

Nadir Arada
Journal of Differential Equations 260 (3) 2557 (2016)
https://doi.org/10.1016/j.jde.2015.10.019

Local controllability to trajectories for non-homogeneous incompressible Navier–Stokes equations

Mehdi Badra, Sylvain Ervedoza and Sergio Guerrero
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 33 (2) 529 (2016)
https://doi.org/10.1016/j.anihpc.2014.11.006

Null controllability of the linearized compressible Navier–Stokes equations using moment method

Shirshendu Chowdhury and Debanjana Mitra
Journal of Evolution Equations 15 (2) 331 (2015)
https://doi.org/10.1007/s00028-014-0263-1

Approximate controllability for linearized compressible barotropic Navier–Stokes system in one and two dimensions

Shirshendu Chowdhury
Journal of Mathematical Analysis and Applications 422 (2) 1034 (2015)
https://doi.org/10.1016/j.jmaa.2014.09.011

Theoretical and Numerical Local Null Controllability of a Ladyzhenskaya–Smagorinsky Model of Turbulence

E. Fernández-Cara, J. Límaco and S. B. de Menezes
Journal of Mathematical Fluid Mechanics 17 (4) 669 (2015)
https://doi.org/10.1007/s00021-015-0232-7

Uniform local null control of the Leray-αmodel

Fágner D. Araruna, Enrique Fernández-Cara and Diego A. Souza
ESAIM: Control, Optimisation and Calculus of Variations 20 (4) 1181 (2014)
https://doi.org/10.1051/cocv/2014011

Small time global null controllability for a viscous Burgers' equation despite the presence of a boundary layer

Frédéric Marbach
Journal de Mathématiques Pures et Appliquées 102 (2) 364 (2014)
https://doi.org/10.1016/j.matpur.2013.11.013

On the “viscous incompressible fluid + rigid body” system with Navier conditions

Gabriela Planas and Franck Sueur
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 31 (1) 55 (2014)
https://doi.org/10.1016/j.anihpc.2013.01.004

Local null controllability of the three-dimensional Navier–Stokes system with a distributed control having two vanishing components

Jean-Michel Coron and Pierre Lissy
Inventiones mathematicae 198 (3) 833 (2014)
https://doi.org/10.1007/s00222-014-0512-5

Simultaneous local exact controllability of 1D bilinear Schrödinger equations

Morgan Morancey
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 31 (3) 501 (2014)
https://doi.org/10.1016/j.anihpc.2013.05.001

Motivation, analysis and control of the variable density Navier-Stokes equations

Enrique Fernández-Cara
Discrete & Continuous Dynamical Systems - S 5 (6) 1021 (2012)
https://doi.org/10.3934/dcdss.2012.5.1021

Boundary layer analysis of the Navier–Stokes equations with generalized Navier boundary conditions

Gung-Min Gie and James P. Kelliher
Journal of Differential Equations 253 (6) 1862 (2012)
https://doi.org/10.1016/j.jde.2012.06.008

A result concerning the global approximate controllability of the Navier–Stokes system in dimension 3

Sergio Guerrero, O.Yu. Imanuvilov and J.-P. Puel
Journal de Mathématiques Pures et Appliquées 98 (6) 689 (2012)
https://doi.org/10.1016/j.matpur.2012.05.008

Local Exact Controllability for the One-Dimensional Compressible Navier–Stokes Equation

Sylvain Ervedoza, Olivier Glass, Sergio Guerrero and Jean-Pierre Puel
Archive for Rational Mechanics and Analysis 206 (1) 189 (2012)
https://doi.org/10.1007/s00205-012-0534-3

Some Controllability Results for Linear Viscoelastic Fluids

J.L. Boldrini, A. Doubova, E. Fernández-Cara and M. González-Burgos
SIAM Journal on Control and Optimization 50 (2) 900 (2012)
https://doi.org/10.1137/100813592

Uniform Controllability of Scalar Conservation Laws in the Vanishing Viscosity Limit

Matthieu Léautaud
SIAM Journal on Control and Optimization 50 (3) 1661 (2012)
https://doi.org/10.1137/100803043

Existence of global strong solutions for the Saint-Venant system with large initial data on the irrotational part of the velocity

Boris Haspot
Comptes Rendus. Mathématique 350 (5-6) 249 (2012)
https://doi.org/10.1016/j.crma.2012.03.007

Recent results on the controllability of linear coupled parabolic problems: A survey

Farid Ammar-Khodja, Assia Benabdallah, Manuel González-Burgos and Luz de Teresa
Mathematical Control & Related Fields 1 (3) 267 (2011)
https://doi.org/10.3934/mcrf.2011.1.267

Applied and Numerical Partial Differential Equations

Enrique Fernández-Cara
Computational Methods in Applied Sciences, Applied and Numerical Partial Differential Equations 15 81 (2010)
https://doi.org/10.1007/978-90-481-3239-3_7

On the global null controllability of a Navier–Stokes system with Navier slip boundary conditions

Marianne Chapouly
Journal of Differential Equations 247 (7) 2094 (2009)
https://doi.org/10.1016/j.jde.2009.06.022

Local null controllability of the two-dimensional Navier–Stokes system in the torus with a control force having a vanishing component

Jean-Michel Coron and Sergio Guerrero
Journal de Mathématiques Pures et Appliquées 92 (5) 528 (2009)
https://doi.org/10.1016/j.matpur.2009.05.015

Exact controllability of Galerkin’s approximations of micropolar fluids

F. Araruna, F. Chaves-Silva and M. Rojas-Medar
Proceedings of the American Mathematical Society 138 (4) 1361 (2009)
https://doi.org/10.1090/S0002-9939-09-10154-5

Feedback stabilization of 2D Navier–Stokes equations with Navier slip boundary conditions

Cătălin Lefter
Nonlinear Analysis: Theory, Methods & Applications 70 (1) 553 (2009)
https://doi.org/10.1016/j.na.2007.12.026

Optimal and Robust Control of Fluid Flows: Some Theoretical and Computational Aspects

T. Tachim Medjo, R. Temam and M. Ziane
Applied Mechanics Reviews 61 (1) (2008)
https://doi.org/10.1115/1.2830523

Steady solutions of the Navier–Stokes equations with threshold slip boundary conditions

C. Le Roux and A. Tani
Mathematical Methods in the Applied Sciences 30 (5) 595 (2007)
https://doi.org/10.1002/mma.802

A Closed-Form Feedback Controller for Stabilization of the Linearized 2-D Navier–Stokes Poiseuille System

Rafael Vazquez and Miroslav Krstic
IEEE Transactions on Automatic Control 52 (12) 2298 (2007)
https://doi.org/10.1109/TAC.2007.910686

Exact controllability in projections for three-dimensional Navier–Stokes equations

Armen Shirikyan
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 24 (4) 521 (2007)
https://doi.org/10.1016/j.anihpc.2006.04.002

Remarks on global controllability for the Burgers equation with two control forces

S. Guerrero and O.Yu. Imanuvilov
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 24 (6) 897 (2007)
https://doi.org/10.1016/j.anihpc.2006.06.010

Feedback boundary stabilization of the three-dimensional incompressible Navier–Stokes equations

J.-P. Raymond
Journal de Mathématiques Pures et Appliquées 87 (6) 627 (2007)
https://doi.org/10.1016/j.matpur.2007.04.002

Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions

Sergio Guerrero
ESAIM: Control, Optimisation and Calculus of Variations 12 (3) 484 (2006)
https://doi.org/10.1051/cocv:2006006

Remarks on global approximate controllability for the 2-D Navier–Stokes system with Dirichlet boundary conditions

Sergio Guerrero, Oleg Yurievich Imanuvilov and Jean-Pierre Puel
Comptes Rendus. Mathématique 343 (9) 573 (2006)
https://doi.org/10.1016/j.crma.2006.09.023

Some Controllability Results forthe N-Dimensional Navier--Stokes and Boussinesq systems with N-1 scalar controls

Enrique Fernández-Cara, Sergio Guerrero, Oleg Yu. Imanuvilov and Jean-Pierre Puel
SIAM Journal on Control and Optimization 45 (1) 146 (2006)
https://doi.org/10.1137/04061965X

Time‐dependent flow across a step: the slip with friction boundary condition

Volker John and Anastasios Liakos
International Journal for Numerical Methods in Fluids 50 (6) 713 (2006)
https://doi.org/10.1002/fld.1074

Mechanics, Dynamics, and Control of a Single-Input Aquatic Vehicle With Variable Coefficient of Lift

Scott D. Kelly and Ramadev B. Hukkeri
IEEE Transactions on Robotics 22 (6) 1254 (2006)
https://doi.org/10.1109/TRO.2006.882934

Global Carleman Inequalities for Parabolic Systems and Applications to Controllability

Enrique Fernández‐Cara and Sergio Guerrero
SIAM Journal on Control and Optimization 45 (4) 1395 (2006)
https://doi.org/10.1137/S0363012904439696

On the small-time local controllability of a quantum particle in a moving one-dimensional infinite square potential well

Jean-Michel Coron
Comptes Rendus. Mathématique 342 (2) 103 (2005)
https://doi.org/10.1016/j.crma.2005.11.004

Solving inverse problems involving the Navier–Stokes equations discretized by a Lagrange–Galerkin method

Gilles Fourestey and Marwan Moubachir
Computer Methods in Applied Mechanics and Engineering 194 (6-8) 877 (2005)
https://doi.org/10.1016/j.cma.2004.07.006

Local exact controllability of the Navier–Stokes system

E. Fernández-Cara, S. Guerrero, O.Yu. Imanuvilov and J.-P. Puel
Journal de Mathématiques Pures et Appliquées 83 (12) 1501 (2004)
https://doi.org/10.1016/j.matpur.2004.02.010

Аппроксимативная управляемость системы Навье - Стокса в неограниченных областях

Pavel Olegovich Shorygin and Павел Олегович Шорыгин
Математический сборник 194 (11) 141 (2003)
https://doi.org/10.4213/sm784