Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Discontinuous polynomial approximation in electrical impedance tomography with total variational regularization

Bangti Jin, Yifeng Xu, Jingrong Yang and Kai Zhang
Communications in Nonlinear Science and Numerical Simulation 137 108166 (2024)
https://doi.org/10.1016/j.cnsns.2024.108166

A high order discontinuous Galerkin method for the recovery of the conductivity in Electrical Impedance Tomography

Xiaosheng Li and Wei Wang
Journal of Computational and Applied Mathematics 434 115344 (2023)
https://doi.org/10.1016/j.cam.2023.115344

Optimal transportation for electrical impedance tomography

Gang Bao and Yixuan Zhang
Mathematics of Computation 93 (349) 2361 (2023)
https://doi.org/10.1090/mcom/3919

Improved Electrical Impedance Tomography Reconstruction via a Bayesian Approach With an Anatomical Statistical Shape Model

Mitchell I. Page, Ruanui Nicholson, Merryn H. Tawhai, Alys R. Clark and Haribalan Kumar
IEEE Transactions on Biomedical Engineering 70 (8) 2486 (2023)
https://doi.org/10.1109/TBME.2023.3250650

Mumford–Shah regularization in electrical impedance tomography with complete electrode model

Jyrki Jauhiainen, Aku Seppänen and Tuomo Valkonen
Inverse Problems 38 (6) 065004 (2022)
https://doi.org/10.1088/1361-6420/ac5f3a

Construct Deep Neural Networks based on Direct Sampling Methods for Solving Electrical Impedance Tomography

Ruchi Guo and Jiahua Jiang
SIAM Journal on Scientific Computing 43 (3) B678 (2021)
https://doi.org/10.1137/20M1367350

Nonconvex and nonsmooth total variation regularization method for diffuse optical tomography based on RTE *

Jinping Tang
Inverse Problems 37 (6) 065001 (2021)
https://doi.org/10.1088/1361-6420/abf5ed

FPGA Acceleration for 3-D Low-Dose Tomographic Reconstruction

Wentai Zhang, Linjun Qiao, William Hsu, et al.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 40 (4) 666 (2021)
https://doi.org/10.1109/TCAD.2020.3006183

An Algorithm for Second Order Mumford--Shah Models Based on a Taylor Jet Formulation

Lukas Kiefer, Martin Storath and Andreas Weinmann
SIAM Journal on Imaging Sciences 13 (4) 2307 (2020)
https://doi.org/10.1137/19M1300959

The inverse conductivity problem via the calculus of functions of bounded variation

Antonios Charalambopoulos, Vanessa Markaki and Drosos Kourounis
Mathematical Methods in the Applied Sciences 43 (8) 5032 (2020)
https://doi.org/10.1002/mma.6251

Smoothing for signals with discontinuities using higher order Mumford–Shah models

Martin Storath, Lukas Kiefer and Andreas Weinmann
Numerische Mathematik 143 (2) 423 (2019)
https://doi.org/10.1007/s00211-019-01052-8

Image reconstruction by Mumford–Shah regularization for low-dose CT with multi-GPU acceleration

Yining Zhu, Qian Wang, Mengfei Li, Ming Jiang and Peng Zhang
Physics in Medicine & Biology 64 (15) 155017 (2019)
https://doi.org/10.1088/1361-6560/ab2c85

Propagation and recovery of singularities in the inverse conductivity problem

Allan Greenleaf, Matti Lassas, Matteo Santacesaria, Samuli Siltanen and Gunther Uhlmann
Analysis & PDE 11 (8) 1901 (2018)
https://doi.org/10.2140/apde.2018.11.1901

Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in EIT

Elena Beretta, Stefano Micheletti, Simona Perotto and Matteo Santacesaria
Journal of Computational Physics 353 264 (2018)
https://doi.org/10.1016/j.jcp.2017.10.017

Fast Segmentation From Blurred Data in 3D Fluorescence Microscopy

Martin Storath, Dennis Rickert, Michael Unser and Andreas Weinmann
IEEE Transactions on Image Processing 26 (10) 4856 (2017)
https://doi.org/10.1109/TIP.2017.2716843

Edge Preserving and Noise Reducing Reconstruction for Magnetic Particle Imaging

Martin Storath, Christina Brandt, Martin Hofmann, et al.
IEEE Transactions on Medical Imaging 36 (1) 74 (2017)
https://doi.org/10.1109/TMI.2016.2593954

Sparsity Regularization of the Diffusion Coefficient Identification Problem: Well-Posedness and Convergence Rates

Pham Quy Muoi
Bulletin of the Malaysian Mathematical Sciences Society 39 (3) 1145 (2016)
https://doi.org/10.1007/s40840-015-0226-x

An accelerated version of alternating direction method of multipliers for TV minimization in EIT

Ashkan Javaherian, Manuchehr Soleimani, Knut Moeller, Amir Movafeghi and Reza Faghihi
Applied Mathematical Modelling 40 (21-22) 8985 (2016)
https://doi.org/10.1016/j.apm.2016.05.052

A Hybrid Segmentation and D-Bar Method for Electrical Impedance Tomography

S. J. Hamilton, J. M. Reyes, S. Siltanen and X. Zhang
SIAM Journal on Imaging Sciences 9 (2) 770 (2016)
https://doi.org/10.1137/15M1025992

The Linearized Inverse Problem in Multifrequency Electrical Impedance Tomography

Giovanni S. Alberti, Habib Ammari, Bangti Jin, Jin-Keun Seo and Wenlong Zhang
SIAM Journal on Imaging Sciences 9 (4) 1525 (2016)
https://doi.org/10.1137/16M1061564

Quantitative Photoacoustic Tomography with Piecewise Constant Material Parameters

W. Naetar and O. Scherzer
SIAM Journal on Imaging Sciences 7 (3) 1755 (2014)
https://doi.org/10.1137/140959705

Sparse 3D reconstructions in electrical impedance tomography using real data

Matthias Gehre, Tobias Kluth, Cristiana Sebu and Peter Maass
Inverse Problems in Science and Engineering 22 (1) 31 (2014)
https://doi.org/10.1080/17415977.2013.827183

A data-driven edge-preserving D-bar method for electrical impedance tomography

Sarah Jane Hamilton, Andreas Hauptmann and Samuli Siltanen
Inverse Problems & Imaging 8 (4) 1053 (2014)
https://doi.org/10.3934/ipi.2014.8.1053

Extraction of Quantifiable Information from Complex Systems

Rudolf Ressel, Patrick Dülk, Stephan Dahlke, Kamil S. Kazimierski and Peter Maass
Lecture Notes in Computational Science and Engineering, Extraction of Quantifiable Information from Complex Systems 102 53 (2014)
https://doi.org/10.1007/978-3-319-08159-5_3

Reducing negative effects of quadratic norm regularization on image reconstruction in electrical impedance tomography

Ashkan Javaherian, Amir Movafeghi and Reza Faghihi
Applied Mathematical Modelling 37 (8) 5637 (2013)
https://doi.org/10.1016/j.apm.2012.11.022

Regularization Properties of Mumford--Shah-Type Functionals with Perimeter and Norm Constraints for Linear Ill-Posed Problems

Esther Klann and Ronny Ramlau
SIAM Journal on Imaging Sciences 6 (1) 413 (2013)
https://doi.org/10.1137/110858422

Existence of minimizers of the Mumford-Shah functional with singular operators and unbounded data

Massimo Fornasier, Riccardo March and Francesco Solombrino
Annali di Matematica Pura ed Applicata 192 (3) 361 (2013)
https://doi.org/10.1007/s10231-011-0228-8

A reconstruction algorithm for electrical impedance tomography based on sparsity regularization

Bangti Jin, Taufiquar Khan and Peter Maass
International Journal for Numerical Methods in Engineering 89 (3) 337 (2012)
https://doi.org/10.1002/nme.3247

An analysis of electrical impedance tomography with applications to Tikhonov regularization

Bangti Jin and Peter Maass
ESAIM: Control, Optimisation and Calculus of Variations 18 (4) 1027 (2012)
https://doi.org/10.1051/cocv/2011193

Numerical treatment of the Mumford–Shah model for the inversion and segmentation of X-ray tomography data

Elena Hoetzl and Wolfgang Ring
Inverse Problems in Science and Engineering 18 (7) 907 (2010)
https://doi.org/10.1080/17415977.2010.492513

Analysis and Regularization of Problems in Diffuse Optical Tomography

Herbert Egger and Matthias Schlottbom
SIAM Journal on Mathematical Analysis 42 (5) 1934 (2010)
https://doi.org/10.1137/090781590

Variational approach to the free‐discontinuity problem of inverse crack identification

R. Tsotsova
Communications in Numerical Methods in Engineering 24 (12) 2216 (2008)
https://doi.org/10.1002/cnm.1078

Nonstationary phase boundary estimation in electrical impedance tomography using unscented Kalman filter

Umer Zeeshan Ijaz, Anil Kumar Khambampati, Jeong Seong Lee, Sin Kim and Kyung Youn Kim
Journal of Computational Physics 227 (15) 7089 (2008)
https://doi.org/10.1016/j.jcp.2007.12.025

Formulation of cost functionals for different measurement principles in nonlinear capacitance tomography

B Kortschak, H Wegleiter and B Brandstätter
Measurement Science and Technology 18 (1) 71 (2007)
https://doi.org/10.1088/0957-0233/18/1/009

Multi-phase permittivity reconstruction in electrical capacitance tomography by level-set methods

Weifu Fang
Inverse Problems in Science and Engineering 15 (3) 213 (2007)
https://doi.org/10.1080/17415970600725078

Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method

Athanasios D Zacharopoulos, Simon R Arridge, Oliver Dorn, Ville Kolehmainen and Jan Sikora
Inverse Problems 22 (5) 1509 (2006)
https://doi.org/10.1088/0266-5611/22/5/001

Level set reconstruction of conductivity and permittivity from boundary electrical measurements using experimental data

M. Soleimani, W. R. B. Lionheart and O. Dorn
Inverse Problems in Science and Engineering 14 (2) 193 (2006)
https://doi.org/10.1080/17415970500264152

A Narrow-Band Level Set Method Applied to EIT in Brain for Cryosurgery Monitoring

M. Soleimani, O. Dorn and W.R.B. Lionheart
IEEE Transactions on Biomedical Engineering 53 (11) 2257 (2006)
https://doi.org/10.1109/TBME.2006.877112

A FEM‐BEM approach using level‐sets in electrical capacitance tomography

Bernhard Kortschak and Bernhard Brandstätter
COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 24 (2) 591 (2005)
https://doi.org/10.1108/03321640510586204

Scale Space and PDE Methods in Computer Vision

Leah Bar, Nir Sochen and Nahum Kiryati
Lecture Notes in Computer Science, Scale Space and PDE Methods in Computer Vision 3459 107 (2005)
https://doi.org/10.1007/11408031_10

History matching problem in reservoir engineering using the propagation–backpropagation method

Pedro González-Rodríguez, Manuel Kindelan, Miguel Moscoso and Oliver Dorn
Inverse Problems 21 (2) 565 (2005)
https://doi.org/10.1088/0266-5611/21/2/009