Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Uniform attractor of impulse-perturbed reaction-diffusion system

Oleksiy Kapustyan, Olena Kapustian, Ihor Korol and Bruno Rubino
Mathematics and Mechanics of Complex Systems 11 (1) 45 (2023)
https://doi.org/10.2140/memocs.2023.11.45

Asymptotically autonomous dynamics for non-autonomous stochastic $ g $-Navier-Stokes equation with additive noise

Fuzhi Li and Dongmei Xu
Discrete and Continuous Dynamical Systems - B 28 (1) 516 (2023)
https://doi.org/10.3934/dcdsb.2022087

Application of Fatou’s Lemma for Strong Homogenization of Attractors to Reaction–Diffusion Systems with Rapidly Oscillating Coefficients in Orthotropic Media with Periodic Obstacles

Kuanysh A. Bekmaganbetov, Gregory A. Chechkin and Vladimir V. Chepyzhov
Mathematics 11 (6) 1448 (2023)
https://doi.org/10.3390/math11061448

The Brinkman-Fourier system with ideal gas equilibrium

Chun Liu and Jan-Eric Sulzbach
Discrete & Continuous Dynamical Systems 42 (1) 425 (2022)
https://doi.org/10.3934/dcds.2021123

Average Process of Fractional Navier–Stokes Equations with Singularly Oscillating Force

Chunjiao Han, Yi Cheng, Ranzhuo Ma and Zhenhua Zhao
Fractal and Fractional 6 (5) 241 (2022)
https://doi.org/10.3390/fractalfract6050241

Strong convergence of attractors of reaction-diffusion system with rapidly oscillating terms in an orthotropic porous medium

Kuanysh Abdrakhmanovich Bekmaganbetov, Vladimir Victorovich Chepyzhov and Gregory Aleksandrovich Chechkin
Izvestiya: Mathematics 86 (6) 1072 (2022)
https://doi.org/10.4213/im9163e

Сильная сходимость аттракторов системы реакции-диффузии с быстро осциллирующими членами в ортотропной пористой среде

Kuanysh Abdrakhmanovich Bekmaganbetov, Vladimir Victorovich Chepyzhov and Gregory Aleksandrovich Chechkin
Известия Российской академии наук. Серия математическая 86 (6) 47 (2022)
https://doi.org/10.4213/im9163

Uniform attractors for nonautonomous reaction-diffusion equations with the nonlinearity in a larger symbol space

Xiangming Zhu and Chengkui Zhong
Discrete and Continuous Dynamical Systems - B 27 (7) 3933 (2022)
https://doi.org/10.3934/dcdsb.2021212

Multi-valued random dynamics of stochastic wave equations with infinite delays

Jingyu Wang, Yejuan Wang and Tomás Caraballo
Discrete and Continuous Dynamical Systems - B 27 (10) 6147 (2022)
https://doi.org/10.3934/dcdsb.2021310

Non-autonomous 2D Newton-Boussinesq equation with oscillating external forces and its uniform attractor

Xueli Song and Jianhua Wu
Evolution Equations & Control Theory 11 (1) 41 (2022)
https://doi.org/10.3934/eect.2020102

Random attractors for stochastic delay wave equations on $ \mathbb{R}^n $ with linear memory and nonlinear damping

Jingyu Wang, Yejuan Wang, Lin Yang and Tomás Caraballo
Discrete and Continuous Dynamical Systems - S 15 (10) 3025 (2022)
https://doi.org/10.3934/dcdss.2021141

Infinite energy solutions for weakly damped quintic wave equations in ℝ³

Xinyu Mei, Anton Savostianov, Chunyou Sun and Sergey Zelik
Transactions of the American Mathematical Society 374 (5) 3093 (2021)
https://doi.org/10.1090/tran/8317

“Strange term” in homogenization of attractors of reaction–diffusion equation in perforated domain

Kuanysh A. Bekmaganbetov, Gregory A. Chechkin and Vladimir V. Chepyzhov
Chaos, Solitons & Fractals 140 110208 (2020)
https://doi.org/10.1016/j.chaos.2020.110208

An invariant set bifurcation theory for nonautonomous nonlinear evolution equations

Xuewei Ju and Ailing Qi
Electronic Journal of Qualitative Theory of Differential Equations (57) 1 (2020)
https://doi.org/10.14232/ejqtde.2020.1.57

Non-autonomous 3D Brinkman-Forchheimer equation with singularly oscillating external force and its uniform attractor

Xueli Song and Jianhua Wu
AIMS Mathematics 5 (2) 1484 (2020)
https://doi.org/10.3934/math.2020102

Weak convergence of attractors of reaction–diffusion systems with randomly oscillating coefficients

Kuanysh A. Bekmaganbetov, Gregory A. Chechkin and Vladimir V. Chepyzhov
Applicable Analysis 98 (1-2) 256 (2019)
https://doi.org/10.1080/00036811.2017.1400538

Center manifolds without a phase space

Grégory Faye and Arnd Scheel
Transactions of the American Mathematical Society 370 (8) 5843 (2018)
https://doi.org/10.1090/tran/7190

Recurrent solutions of the linearly coupled complex cubic‐quintic Ginzburg‐Landau equations

Peng Gao
Mathematical Methods in the Applied Sciences 41 (7) 2769 (2018)
https://doi.org/10.1002/mma.4778

Homogenization of trajectory attractors of 3D Navier-Stokes system with randomly oscillating force

Kuanysh A. Bekmaganbetov, Gregory A. Chechkin, Vladimir V. Chepyzhov and Andrey Yu. Goritsky
Discrete & Continuous Dynamical Systems - A 37 (5) 2375 (2017)
https://doi.org/10.3934/dcds.2017103

Averaging of equations of viscoelasticity with singularly oscillating external forces

Vladimir V. Chepyzhov, Monica Conti and Vittorino Pata
Journal de Mathématiques Pures et Appliquées 108 (6) 841 (2017)
https://doi.org/10.1016/j.matpur.2017.05.007

Structure and bifurcation of pullback attractors in a non-autonomous Chafee-Infante equation

A. Carvalho, J. Langa and J. Robinson
Proceedings of the American Mathematical Society 140 (7) 2357 (2011)
https://doi.org/10.1090/S0002-9939-2011-11071-2

Kernel sections of multi-valued processes with application to the nonlinear reaction-diffusion equations in unbounded domains

Yejuan Wang and Shengfan Zhou
Quarterly of Applied Mathematics 67 (2) 343 (2009)
https://doi.org/10.1090/S0033-569X-09-01150-0

Existence and regularity of pullback attractors for an incompressible non-Newtonian fluid with delays

Caidi Zhao, Shengfan Zhou and Yongsheng Li
Quarterly of Applied Mathematics 67 (3) 503 (2009)
https://doi.org/10.1090/S0033-569X-09-01146-2

Theorems about the attractor for incompressible non-Newtonian flow driven by external forces that are rapidly oscillating in time but have a smooth average

Caidi Zhao, Shengfan Zhou and Yongsheng Li
Journal of Computational and Applied Mathematics 220 (1-2) 129 (2008)
https://doi.org/10.1016/j.cam.2007.08.002

Instability in Models Connected with Fluid Flows I

Vladimir Chepyzhov and Mark Vishik
International Mathematical Series, Instability in Models Connected with Fluid Flows I 6 135 (2008)
https://doi.org/10.1007/978-0-387-75217-4_4

Averaging of nonautonomous damped wave equations with singularly oscillating external forces

V.V. Chepyzhov, V. Pata and M.I. Vishik
Journal de Mathématiques Pures et Appliquées 90 (5) 469 (2008)
https://doi.org/10.1016/j.matpur.2008.07.001

Time averaging of global attractors for nonautonomous wave equations with singularly oscillating external forces

M. I. Vishik, V. Pata and V. V. Chepyzhov
Doklady Mathematics 78 (2) 689 (2008)
https://doi.org/10.1134/S1064562408050128

On non-autonomous strongly damped wave equations with a uniform attractor and some averaging

Hongyan Li and Shengfan Zhou
Journal of Mathematical Analysis and Applications 341 (2) 791 (2008)
https://doi.org/10.1016/j.jmaa.2007.10.051

The global attractor of the nonautonomous 2D navier-stokes system with singularly oscillating external force

M. I. Vishik and V. V. Chepyzhov
Doklady Mathematics 75 (2) 236 (2007)
https://doi.org/10.1134/S1064562407020160

Non-autonomous 2D Navier–Stokes System with Singularly Oscillating External Force and its Global Attractor

V. V. Chepyzhov and M. I. Vishik
Journal of Dynamics and Differential Equations 19 (3) 655 (2007)
https://doi.org/10.1007/s10884-007-9077-y

Аттракторы диссипативных гиперболических уравнений с сингулярно осциллирующими внешними силами

Marko Iosifovich Vishik, Марко Иосифович Вишик, Владимир Викторович Чепыжов and Vladimir Victorovich Chepyzhov
Математические заметки 79 (4) 522 (2006)
https://doi.org/10.4213/mzm2722

Attractors of dissipative hyperbolic equations with singularly oscillating external forces

M. I. Vishik and V. V. Chepyzhov
Mathematical Notes 79 (3-4) 483 (2006)
https://doi.org/10.1007/s11006-006-0054-2