The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Viorel Barbu
ESAIM: COCV, 9 (2003) 197-205
Published online: 2003-09-15
This article has been cited by the following article(s):
58 articles
Interior and H∞ feedback stabilization for sabra shell model of turbulence
Tania Biswas and Sheetal Dharmatti Mathematical Methods in the Applied Sciences 46 (2) 1852 (2023) https://doi.org/10.1002/mma.8615
Numerical Control: Part B
Peter Benner and Michael Hinze Handbook of Numerical Analysis, Numerical Control: Part B 24 77 (2023) https://doi.org/10.1016/bs.hna.2022.12.002
An efficient extended block Arnoldi algorithm for feedback stabilization of incompressible Navier-Stokes flow problems
M.A. Hamadi, K. Jbilou and A. Ratnani Applied Numerical Mathematics 174 142 (2022) https://doi.org/10.1016/j.apnum.2022.01.011
Feedback Boundary Stabilization to Trajectories for 3D Navier–Stokes Equations
Sérgio S. Rodrigues Applied Mathematics & Optimization 84 (S2) 1149 (2021) https://doi.org/10.1007/s00245-017-9474-5
Approximate local output regulation for a class of nonlinear fluid flows
Konsta Huhtala and Lassi Paunonen European Journal of Control 62 136 (2021) https://doi.org/10.1016/j.ejcon.2021.06.025
Global Stabilization of the Navier-Stokes Equations Around an Unstable Steady State with Mixed Boundary Kinetic Energy Controller
Abdou Sène, Timack Ngom and Evrad M. D. Ngom Journal of Dynamical and Control Systems 25 (2) 197 (2019) https://doi.org/10.1007/s10883-018-9406-y
Controllability and Stabilization of Parabolic Equations
Viorel Barbu Progress in Nonlinear Differential Equations and Their Applications, Controllability and Stabilization of Parabolic Equations 90 197 (2018) https://doi.org/10.1007/978-3-319-76666-9_6
Turnpike Property for Two-Dimensional Navier–Stokes Equations
Sebastián Zamorano Journal of Mathematical Fluid Mechanics 20 (3) 869 (2018) https://doi.org/10.1007/s00021-018-0382-5
Boundary feedback stabilization of the monodomain equations
Tobias Breiten and Karl Kunisch Mathematical Control & Related Fields 7 (3) 369 (2017) https://doi.org/10.3934/mcrf.2017013
Boundary Stabilization of Stokes System in Exterior Domains
A. V. Gorshkov Journal of Mathematical Fluid Mechanics 18 (4) 679 (2016) https://doi.org/10.1007/s00021-016-0258-5
Feedback stabilization of a thermal fluid system with mixed boundary control
John A. Burns, Xiaoming He and Weiwei Hu Computers & Mathematics with Applications 71 (11) 2170 (2016) https://doi.org/10.1016/j.camwa.2016.01.011
Internal Feedback Stabilization of Nonstationary Solutions to Semilinear Parabolic Systems
Cătălin-George Lefter Journal of Optimization Theory and Applications 170 (3) 960 (2016) https://doi.org/10.1007/s10957-016-0964-4
Global stabilization of the Navier-Stokes equations around an unstable equilibrium state with a boundary feedback controller
Daniel Y. Le Roux, Abdou Sène and Evrad M. D. Ngom Evolution Equations and Control Theory 4 (1) 89 (2015) https://doi.org/10.3934/eect.2015.4.89
Algebraic Multiplicities Arising from Static Feedback Control Systems of Parabolic Type
Takao Nambu Numerical Functional Analysis and Optimization 35 (10) 1359 (2014) https://doi.org/10.1080/01630563.2014.884581
Riccati-Based Feedback Control of the Monodomain Equations With the Fitzhugh--Nagumo Model
Tobias Breiten and Karl Kunisch SIAM Journal on Control and Optimization 52 (6) 4057 (2014) https://doi.org/10.1137/140964552
Finite-dimensional stabilization of viscous gas dynamics at a given rate
E. V. Amosova Differential Equations 50 (8) 1080 (2014) https://doi.org/10.1134/S0012266114080072
Boundary stabilization of
the Navier-Stokes equations with feedback controller via a Galerkin method
Evrad M. D. Ngom, Abdou Sène and Daniel Y. Le Roux Evolution Equations & Control Theory 3 (1) 147 (2014) https://doi.org/10.3934/eect.2014.3.147
A feedback control method for the stabilization of a nonlinear diffusion system on a graph
Xin Yu, Chao Xu and Qun Lin Chinese Physics B 23 (8) 080206 (2014) https://doi.org/10.1088/1674-1056/23/8/080206
Stabilization of the simplest normal parabolic equation
Andrei Fursikov Communications on Pure & Applied Analysis 13 (5) 1815 (2014) https://doi.org/10.3934/cpaa.2014.13.1815
John A. Burns and Weiwei Hu 454 (2013) https://doi.org/10.1109/CDC.2013.6759923
Boundary scalar controllability in projections for the Navier-Stokes system
A. Yu. Chebotarev Differential Equations 49 (12) 1629 (2013) https://doi.org/10.1134/S0012266113120161
Internal stabilization of Navier-Stokes equation with exact controllability on spaces with finite codimension
Ionuţ Munteanu and Viorel Barbu Evolution Equations and Control Theory 1 (1) 1 (2012) https://doi.org/10.3934/eect.2012.1.1
Certain questions of feedback stabilization for Navier-Stokes equations
Alexey V. Gorshkov and Andrei Fursikov Evolution Equations and Control Theory 1 (1) 109 (2012) https://doi.org/10.3934/eect.2012.1.109
Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control
Mehdi Badra Discrete & Continuous Dynamical Systems - A 32 (4) 1169 (2012) https://doi.org/10.3934/dcds.2012.32.1169
Mathematical Aspects of Fluid Mechanics
A.V. Fursikov and A.A. Kornev Mathematical Aspects of Fluid Mechanics 130 (2012) https://doi.org/10.1017/CBO9781139235792.008
Mathematics of Complexity and Dynamical Systems
Fatiha Alabau‐Boussouira and Piermarco Cannarsa Mathematics of Complexity and Dynamical Systems 102 (2012) https://doi.org/10.1007/978-1-4614-1806-1_8
Finite-dimensional stabilization of stationary Navier-Stokes systems
A. Yu. Chebotarev Differential Equations 48 (3) 390 (2012) https://doi.org/10.1134/S001226611203010X
Stabilization of equilibrium MHD configurations by external currents
A. Yu. Chebotarev Computational Mathematics and Mathematical Physics 52 (12) 1670 (2012) https://doi.org/10.1134/S0965542512120068
Internal Nonlinear Predictive Control of Semilinear Parabolic Equations
Lianjun Bai and Daniel Coca IFAC Proceedings Volumes 44 (1) 5525 (2011) https://doi.org/10.3182/20110828-6-IT-1002.01385
Internal Exponential Stabilization to a Nonstationary Solution for 3D Navier–Stokes Equations
Viorel Barbu, Sérgio S. Rodrigues and Armen Shirikyan SIAM Journal on Control and Optimization 49 (4) 1454 (2011) https://doi.org/10.1137/100785739
Internal Stabilization by Noise of the Navier–Stokes Equation
Viorel Barbu and Giuseppe Da Prato SIAM Journal on Control and Optimization 49 (1) 1 (2011) https://doi.org/10.1137/09077607X
Stabilization of Navier–Stokes Flows
Viorel Barbu Communications and Control Engineering, Stabilization of Navier–Stokes Flows 25 (2011) https://doi.org/10.1007/978-0-85729-043-4_2
Stabilization of Navier–Stokes Flows
Viorel Barbu Communications and Control Engineering, Stabilization of Navier–Stokes Flows 87 (2011) https://doi.org/10.1007/978-0-85729-043-4_3
The internal stabilization by noise of the linearized Navier-Stokes equation
Viorel Barbu ESAIM: Control, Optimisation and Calculus of Variations 17 (1) 117 (2011) https://doi.org/10.1051/cocv/2009042
$H^\infty$ Feedback Boundary Stabilization of the Two-Dimensional Navier–Stokes Equations
Sheetal Dharmatti, Jean-Pierre Raymond and Laetitia Thevenet SIAM Journal on Control and Optimization 49 (6) 2318 (2011) https://doi.org/10.1137/100782607
Feedback Stabilization of Magnetohydrodynamic Equations
Cătălin-George Lefter SIAM Journal on Control and Optimization 49 (3) 963 (2011) https://doi.org/10.1137/070697124
Finite-dimensional controllability for systems of Navier-Stokes type
A. Yu. Chebotarev Differential Equations 46 (10) 1498 (2010) https://doi.org/10.1134/S0012266110100149
On a Unique Continuation Property Related to the Boundary Stabilization of Magnetohydrodynamic Equations
Cătălin-George Lefter Annals of the Alexandru Ioan Cuza University - Mathematics 56 (1) 1 (2010) https://doi.org/10.2478/v10157-010-0001-0
Feedback stabilization of 2D Navier–Stokes equations with Navier slip boundary conditions
Cătălin Lefter Nonlinear Analysis: Theory, Methods & Applications 70 (1) 553 (2009) https://doi.org/10.1016/j.na.2007.12.026
Motion planning and trajectory tracking for three-dimensional Poiseuille flow
JENNIE COCHRAN and MIROSLAV KRSTIC Journal of Fluid Mechanics 626 307 (2009) https://doi.org/10.1017/S0022112009005977
Lyapunov Function and Local Feedback Boundary Stabilization of the Navier–Stokes Equations
Mehdi Badra SIAM Journal on Control and Optimization 48 (3) 1797 (2009) https://doi.org/10.1137/070682630
Encyclopedia of Complexity and Systems Science
Fatiha Alabau‐Boussouira and Piermarco Cannarsa Encyclopedia of Complexity and Systems Science 1485 (2009) https://doi.org/10.1007/978-0-387-30440-3_97
Internal Optimal Controller Synthesis for Navier–Stokes Equations
Y. Yan, D. Coca and V. Barbu Numerical Functional Analysis and Optimization 29 (1-2) 225 (2008) https://doi.org/10.1080/01630560701872458
Control of Coupled Partial Differential Equations
Viorel Barbu, Irena Lasiecka and Roberto Triggiani International Series of Numerical Mathematics, Control of Coupled Partial Differential Equations 155 13 (2007) https://doi.org/10.1007/978-3-7643-7721-2_2
Control of Coupled Partial Differential Equations
Vincent Heuveline and Hoang Nam-Dung International Series of Numerical Mathematics, Control of Coupled Partial Differential Equations 155 95 (2007) https://doi.org/10.1007/978-3-7643-7721-2_5
A Closed-Form Feedback Controller for Stabilization of the Linearized 2-D Navier–Stokes Poiseuille System
Rafael Vazquez and Miroslav Krstic IEEE Transactions on Automatic Control 52 (12) 2298 (2007) https://doi.org/10.1109/TAC.2007.910686
Local Stabilization of the Navier–Stokes Equations with a Feedback Controller Localized in an Open Subset of the Domain
Mehdi Badra Numerical Functional Analysis and Optimization 28 (5-6) 559 (2007) https://doi.org/10.1080/01630560701348434
Internal Stabilization of a Mutualistic Reaction Diffusion System
Wang Yuan Dong Acta Mathematica Sinica, English Series 23 (2) 373 (2007) https://doi.org/10.1007/s10114-005-0911-z
Feedback boundary stabilization of the three-dimensional incompressible Navier–Stokes equations
J.-P. Raymond Journal de Mathématiques Pures et Appliquées 87 (6) 627 (2007) https://doi.org/10.1016/j.matpur.2007.04.002
Control of Coupled Partial Differential Equations
Jean-Pierre Raymond International Series of Numerical Mathematics, Control of Coupled Partial Differential Equations 155 269 (2007) https://doi.org/10.1007/978-3-7643-7721-2_12
Jennie Cochran, Rafael Vazquez and Miroslav Krstic 5329 (2006) https://doi.org/10.1109/CDC.2006.377593
J. Cochran, R. Vazquez and M. Krstic 6 pp. (2006) https://doi.org/10.1109/ACC.2006.1655449
Feedback Boundary Stabilization of the Two-Dimensional Navier--Stokes Equations
Jean-Pierre Raymond SIAM Journal on Control and Optimization 45 (3) 790 (2006) https://doi.org/10.1137/050628726
Abstract settings for tangential boundary stabilization of Navier–Stokes equations by high- and low-gain feedback controllers
Viorel Barbu, Irena Lasiecka and Roberto Triggiani Nonlinear Analysis: Theory, Methods & Applications 64 (12) 2704 (2006) https://doi.org/10.1016/j.na.2005.09.012
Stabilizing Semilinear Parabolic Equations
V. Barbu, D. Coca and Y. Yan Numerical Functional Analysis and Optimization 26 (4-5) 449 (2005) https://doi.org/10.1080/01630560500248272
R. Vazquez and M. Krstic 7358 (2005) https://doi.org/10.1109/CDC.2005.1583349
System Modeling and Optimization
Roberto Triggiani IFIP International Federation for Information Processing, System Modeling and Optimization 166 41 (2005) https://doi.org/10.1007/0-387-23467-5_3
Internal stabilization of semilinear parabolic systems
V. Barbu and G. Wang Journal of Mathematical Analysis and Applications 285 (2) 387 (2003) https://doi.org/10.1016/S0022-247X(03)00405-0