Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Direction-dependent turning leads to anisotropic diffusion and persistence

N. LOY, T. HILLEN and K. J. PAINTER
European Journal of Applied Mathematics 33 (4) 729 (2022)
https://doi.org/10.1017/S0956792521000206

Manifold Learning and Nonlinear Homogenization

Shi Chen, Qin Li, Jianfeng Lu and Stephen J. Wright
Multiscale Modeling & Simulation 20 (3) 1093 (2022)
https://doi.org/10.1137/20M1377771

A Low-Rank Schwarz Method for Radiative Transfer Equation With Heterogeneous Scattering Coefficient

Ke Chen, Qin Li, Jianfeng Lu and Stephen J. Wright
Multiscale Modeling & Simulation 19 (2) 775 (2021)
https://doi.org/10.1137/19M1276327

Homogenization and diffusion approximation of the Vlasov–Poisson–Fokker–Planck system: A relative entropy approach

Lanoir Addala, Najoua El Ghani and Mohamed Lazhar Tayeb
Asymptotic Analysis 121 (3-4) 401 (2021)
https://doi.org/10.3233/ASY-201608

Homogenization of linear Boltzmann equations in the context of algebras with mean value

P. Fouegap, R. Kenne Bogning, G. Nguetseng, D. Dongo and J. L. Woukeng
Zeitschrift für angewandte Mathematik und Physik 71 (5) (2020)
https://doi.org/10.1007/s00033-020-01391-9

Generalized Multiscale Finite Element Method for the Steady State Linear Boltzmann Equation

Eric Chung, Yalchin Efendiev, Yanbo Li and Qin Li
Multiscale Modeling & Simulation 18 (1) 475 (2020)
https://doi.org/10.1137/19M1256282

Homogenization of a spherical harmonics expansion model

Nader Masmoudi, Mohamed Lazhar Tayeb and Abderraouf Tlili
Mathematical Models and Methods in Applied Sciences 28 (03) 453 (2018)
https://doi.org/10.1142/S0218202518500124

An Asymptotic Preserving Method for Transport Equations with Oscillatory Scattering Coefficients

Qin Li and Jianfeng Lu
Multiscale Modeling & Simulation 15 (4) 1694 (2017)
https://doi.org/10.1137/16M109212X

Simultaneous diffusion and homogenization asymptotic for the linear Boltzmann equation

Claude Bardos and Harsha Hutridurga
Asymptotic Analysis 100 (1-2) 111 (2016)
https://doi.org/10.3233/ASY-161388

Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations

V. Bonnaillie-Noël, J. A. Carrillo, T. Goudon and G. A. Pavliotis
IMA Journal of Numerical Analysis 36 (4) 1536 (2016)
https://doi.org/10.1093/imanum/drv066

Confinement by biased velocity jumps: Aggregation of escherichia coli

Vincent Calvez, Gaël Raoul and Christian Schmeiser
Kinetic and Related Models 8 (4) 651 (2015)
https://doi.org/10.3934/krm.2015.8.651

Homogenization and Hydrodynamic Limit for Fermi‐Dirac Statistics Coupled to a Poisson Equation

Nader Masmoudi and Mohamed Lazhar Tayeb
Communications on Pure and Applied Mathematics 68 (10) 1742 (2015)
https://doi.org/10.1002/cpa.21593

A Corrector Theory for Diffusion-Homogenization Limits of Linear Transport Equations

Guillaume Bal, Naoufel Ben Abdallah and Marjolaine Puel
SIAM Journal on Mathematical Analysis 44 (6) 3848 (2012)
https://doi.org/10.1137/110857301

Diffusion and Homogenization Limits with Separate Scales

Naoufel Ben Abdallah, Marjolaine Puel and Michael S. Vogelius
Multiscale Modeling & Simulation 10 (4) 1148 (2012)
https://doi.org/10.1137/110828964

DIFFUSION AND HOMOGENIZATION APPROXIMATION FOR SEMICONDUCTOR BOLTZMANN–POISSON SYSTEM

NADER MASMOUDI and MOHAMED LAZHAR TAYEB
Journal of Hyperbolic Differential Equations 05 (01) 65 (2008)
https://doi.org/10.1142/S0219891608001374

Homogenization of Transport Equations: Weak Mean Field Approximation

Thierry Goudon and Frédéric Poupaud
SIAM Journal on Mathematical Analysis 36 (3) 856 (2005)
https://doi.org/10.1137/S0036141003415032

Diffusion Approximation and Homogenization of the Semiconductor Boltzmann Equation

Naoufel Ben Abdallah and Mohamed Lazhar Tayeb
Multiscale Modeling & Simulation 4 (3) 896 (2005)
https://doi.org/10.1137/040611227