Free access
Issue
ESAIM: COCV
Volume 10, Number 2, April 2004
Page(s) 168 - 200
DOI http://dx.doi.org/10.1051/cocv:2004003
Published online 15 March 2004
  1. F. Ancona and A. Bressan, Patchy vector fields and asymptotic stabilization. ESAIM: COCV 4 (1999) 445-471. [CrossRef] [EDP Sciences]
  2. F. Ancona and A. Bressan, Flow Stability of Patchy vector fields and Robust Feedback Stabilization. SIAM J. Control Optim. 41 (2003) 1455-1476. [CrossRef]
  3. A. Bressan, On differential systems with impulsive controls. Rend. Sem. Mat. Univ. Padova 78 (1987) 227-235. [MathSciNet]
  4. F.H. Clarke, Yu.S. Ledyaev, L. Rifford and R.J. Stern, Feedback stabilization and Lyapunov functions. SIAM J. Control Optim. 39 (2000) 25-48. [CrossRef] [MathSciNet]
  5. F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag and A.I. Subbotin, Asymptotic controllability implies feedback stabilization. IEEE Trans. Autom. Control 42 (1997) 1394-1407. [CrossRef] [MathSciNet]
  6. F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory 178. Springer-Verlag, New York (1998).
  7. L. Rifford, Existence of Lipschitz and semi-concave control-Lyapunov functions. SIAM J. Control Optim. 39 (2000) 1043-1064. [CrossRef] [MathSciNet]
  8. L. Rifford, Semi-concave control-Lyapunov functions and stabilizing feedbacks. SIAM J. Control Optim. 41 (2002) 659-681. [CrossRef] [MathSciNet]
  9. E.D. Sontag, Stability and stabilization: discontinuities and the effect of disturbances, in Proc. NATO Advanced Study Institute – Nonlinear Analysis, Differential Equations, and Control, Montreal, Jul/Aug 1998, F.H. Clarke and R.J. Stern Eds., Kluwer (1999) 551-598.