Free access
Issue
ESAIM: COCV
Volume 13, Number 4, October-December 2007
Page(s) 793 - 808
DOI http://dx.doi.org/10.1051/cocv:2007042
Published online 05 September 2007
  1. G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 77 (1998) 153–208. [CrossRef] [MathSciNet]
  2. B. Chenaud, P. Duclos, P. Freitas and D. Krejčiřík, Geometrically induced discrete specrtum in curved tubes. Differ. Geometry Appl. 23 (2005) 95–105. [CrossRef]
  3. C. Conca, J. Planchard and M. Vanninathan, Fluids and periodic structures, Research in Applied Mathematics 38. Masson, Paris (1995).
  4. G. Dal Maso, An Introduction to Γ -Convergence. Birkhäuser, Boston (1993).
  5. P. Duclos and P. Exner, Curvature-induced bounds states in quantum waveguides in two and tree dimensions. Rev. Math. Phys. 7 (1995) 73–102. [CrossRef] [MathSciNet]
  6. V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Equations. Springer-Verlag, Berlin (1994).
  7. P. Kuchment, On some spectral problems of mathematical physics. Partial differential equations and inverse problems., Contemp. Math. 362. Amer. Math. Soc., Providence, RI (2004) 241–276.
  8. J. Rubinstein, M. Schatzman, Variational problems on multiply connected thin strips. II. Convergence of the Ginzburg-Landau functional. Arch. Ration. Mech. Anal. 160 (2001) 309–324. [CrossRef] [MathSciNet]
  9. M. Vanninathan, Homogenization of eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci. 90 (1981) 239–271. [CrossRef] [MathSciNet]