Free access
Issue
ESAIM: COCV
Volume 17, Number 1, January-March 2011
Page(s) 131 - 154
DOI http://dx.doi.org/10.1051/cocv/2009044
Published online 04 December 2009
  1. W. Allard, On the first variation of a varifold. Ann. Math. 95 (1972) 417–491. [CrossRef]
  2. G. Bellettini and L. Mugnai, Characterization and representation of the lower semicontinuous envelope of the elastica functional. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 839–880. [CrossRef] [MathSciNet]
  3. G. Bellettini and L. Mugnai, A varifolds representation of the relaxed elastica functional. Journal of Convex Analysis 14 (2007) 543–564. [MathSciNet]
  4. T. D'Aprile, Behaviour of symmetric solutions of a nonlinear elliptic field equation in the semi-classical limit: Concentration around a circle. Electronic J. Differ. Equ. 2000 (2000) 1–40.
  5. A. Doelman and H. van der Ploeg, Homoclinic stripe patterns. SIAM J. Appl. Dyn. Syst. 1 (2002) 65–104. [CrossRef] [MathSciNet]
  6. I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications. Oxford University Press Inc., New York, USA (1995).
  7. O. Gonzalez and J. Maddocks, Global curvature, thickness, and the ideal shape of knots. Proc. Natl. Acad. Sci. USA 96 (1999) 4769–4773. [CrossRef] [MathSciNet]
  8. J. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J. 35 (1986) 45–71. [CrossRef] [MathSciNet]
  9. M. Kac, Can one hear the shape of a drum? Amer. Math. Monthly 73 (1966) 1–23. [CrossRef] [MathSciNet]
  10. M.A. Peletier and M. Röger, Partial localization, lipid bilayers, and the elastica functional. Arch. Rational Mech. Anal. 193 (2008) 475–537. [CrossRef]
  11. N. Sidorova and O. Wittich, Construction of surface measures for Brownian motion, in Trends in stochastic analysis: a Festschrift in honour of Heinrich von Weizsäcker, LMS Lecture Notes 353, Cambridge UP (2009) 123–158.
  12. Y. van Gennip and M.A. Peletier, Copolymer-homopolymer blends: global energy minimisation and global energy bounds. Calc. Var. Part. Differ. Equ. 33 (2008) 75–111. [CrossRef]
  13. Y. van Gennip and M.A. Peletier, Stability of monolayers and bilayers in a copolymer-homopolymer blend model. Interfaces Free Bound. 11 (2009) 331–373. [CrossRef] [MathSciNet]