Free access
Volume 17, Number 4, October-December 2011
Page(s) 995 - 1015
DOI http://dx.doi.org/10.1051/cocv/2010030
Published online 06 August 2010
  1. J.-P. Aubin and A. Cellina, Differential inclusions, Comprehensive studies in mathematics 264. Springer, Berlin, Heidelberg, New York, Tokyo (1984).
  2. J.-P. Aubin and H. Frankowska, Set-valued analysis, Systems and Control: Foundations and Applications 2. Birkhäuser Boston Inc., Boston (1990).
  3. M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems and Control: Foundations and Applications. Birkhäuser, Boston (1997).
  4. M. Bardi, P. Goatin and H. Ishii, A Dirichlet type problem for nonlinear degenerate elliptic equations arising in time-optimal stochastic control. Adv. Math. Sci. Appl. 10 (2000) 329–352. [MathSciNet]
  5. G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques et Applications 17. Springer, Paris (1994).
  6. G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems. RAIRO: Modél. Math. Anal. Numér. 21 (1987) 557–579. [MathSciNet]
  7. G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim. 26 (1988) 1133–1148. [CrossRef] [MathSciNet]
  8. G. Barles and B. Perthame, Comparaison principle for Dirichlet-type Hamilton-Jacobi equations and singular perturbations of degenerated elliptic equations. Appl. Math. Optim. 21 (1990) 21–44. [CrossRef] [MathSciNet]
  9. E.N. Barron, Viscosity solutions and analysis in L, in Proceedings of the NATO advanced Study Institute (1999) 1–60.
  10. E.N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians. Commun. Partial Diff. Equ. 15 (1990) 1713–1742.
  11. A. Blanc, Deterministic exit time problems with discontinuous exit cost. SIAM J. Control Optim. 35 (1997) 399–434. [CrossRef] [MathSciNet]
  12. O. Bokanowski, N. Forcadel and H. Zidani, Reachability and minimal times for state constrained nonlinear problems without any controllability assumption. SIAM J. Control Optim. 48 (2010) 4292–4316. [CrossRef] [MathSciNet]
  13. I. Capuzzo-Dolcetta and P.-L. Lions, Hamilton-Jacobi equations with state constraints. Trans. Amer. Math. Soc. 318 (1990) 643–683. [CrossRef] [MathSciNet]
  14. P. Cardaliaguet, M. Quincampoix and P. Saint-Pierre, Optimal times for constrained nonlinear control problems without local controllability. Appl. Math. Optim. 36 (1997) 21–42. [MathSciNet]
  15. F. Clarke, Y.S. Ledyaev, R. Stern and P. Wolenski, Nonsmooth analysis and control theory. Springer (1998).
  16. H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim. 31 (1993) 257–272. [CrossRef] [MathSciNet]
  17. H. Frankowska and S. Plaskacz, Semicontinuous solutions of Hamilton-Jacobi-Bellman equations with degenerate state constraints. J. Math. Anal. Appl. 251 (2000) 818–838. [CrossRef] [MathSciNet]
  18. H. Frankowska and R.B. Vinter, Existence of neighboring feasible trajectories: applications to dynamic programming for state-constrained optimal control problems. J. Optim. Theory Appl. 104 (2000) 21–40. [MathSciNet]
  19. H. Ishii and S. Koike, A new formulation of state constraint problems for first-order PDEs. SIAM J. Control Optim. 34 (1996) 554–571. [CrossRef] [MathSciNet]
  20. M. Motta, On nonlinear optimal control problems with state constraints. SIAM J. Control Optim. 33 (1995) 1411–1424. [CrossRef] [MathSciNet]
  21. H.M. Soner, Optimal control with state-space constraint, I. SIAM J. Control Optim. 24 (1986) 552–561. [CrossRef] [MathSciNet]
  22. H.M. Soner, Optimal control with state-space constraint, II. SIAM J. Control Optim. 24 (1986) 1110–1122. [CrossRef] [MathSciNet]
  23. P. Soravia, Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. II. Equations of control problems with state constraints. Diff. Int. Equ. 12 (1999) 275–293.