Free access
Issue
ESAIM: COCV
Volume 17, Number 4, October-December 2011
Page(s) 1035 - 1065
DOI http://dx.doi.org/10.1051/cocv/2010036
Published online 28 October 2010
  1. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. [CrossRef] [MathSciNet]
  2. M.F. Ashby, The deformation of plastically non-homogeneous alloys. Philos. Mag. 21 (1970) 399–424. [CrossRef]
  3. D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization. C. R. Math. Acad. Sci. Paris 335 (2002) 99–104. [CrossRef] [MathSciNet]
  4. D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40 (2008) 1585–1620. [CrossRef] [MathSciNet]
  5. G. Dal Maso, A. DeSimone and M.G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237–291. [CrossRef] [MathSciNet]
  6. R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology 2, Functional and variational methods. Springer-Verlag, Berlin (1988).
  7. N.A. Fleck and J.W. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33 (1997) 295–361. [CrossRef]
  8. N.A. Fleck and J.W. Hutchinson, A reformulation of strain gradient plasticity. J. Mech. Phys. Solids. 49 (2001) 2245–2271. [CrossRef]
  9. N.A. Fleck and J.R. Willis, Bounds and estimates for the effect of strain gradients upon the effective plastic properties of an isotropic two-phase composite. J. Mech. Phys. Solids 52 (2004) 1855–1888. [CrossRef] [MathSciNet]
  10. G. Francfort and P.-M. Suquet, Homogenization and mechanical dissipation in thermoviscoelasticity. Arch. Ration. Mech. Anal. 96 (1986) 265–293.
  11. A. Giacomini and L. Lussardi, Quasi-static evolution for a model in strain gradient plasticity. SIAM J. Math. Anal. 40 (2008) 1201–1245. [CrossRef] [MathSciNet]
  12. P. Gudmundson, A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52 (2004) 1379–1406. [CrossRef] [MathSciNet]
  13. M.E. Gurtin and L. Anand, A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. I. Small deformations. J. Mech. Phys. Solids 53 (2005) 1624–1649. [CrossRef] [MathSciNet]
  14. D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002) 35–86. [MathSciNet]
  15. A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differential Equations 22 (2005) 73–99.
  16. A. Mielke, Evolution of rate-independent systems, in Handb. Differ. Equ., Evolutionary equations II, Elsevier/North-Holland, Amsterdam (2005) 461–559.
  17. A. Mielke and F. Theil, A mathematical model for rate independent phase transformations with hysteresis, in Proceedings of the Workshop on Models of Continuum Mechanics in Analysis and Engineering, H.-D. Alber, R. Balean and R. Farwig Eds., Shaker-Verlag, Aachen (1999) 117–129.
  18. A. Mielke and A.M. Timofte, Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Anal. 39 (2007) 642–668. [CrossRef] [MathSciNet]
  19. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. [CrossRef] [MathSciNet]
  20. L. Tartar, Nonlocal effects induced by homogenization, in Partial differential equations and the calculus of variations II, Progr. Nonlinear Differential Equations Appl. 2, Birkhäuser Boston, Boston (1989) 925–938.
  21. L. Tartar, Memory effects and homogenization. Arch. Ration. Mech. Anal. 111 (1990) 121–133. [CrossRef] [MathSciNet]
  22. A. Visintin, Homogenization of the nonlinear Kelvin-Voigt model of viscoelasticity and of the Prager model of plasticity. Contin. Mech. Thermodyn. 18 (2006) 223–252. [CrossRef] [MathSciNet]
  23. A. Visintin, Homogenization of the nonlinear Maxwell model of viscoelasticity and of the Prandtl-Reuss model of elastoplasticity. Proc. Roy. Soc. Edinburgh Sect. A 138 (2008) 1363–1401. [CrossRef] [MathSciNet]
  24. A. Visintin, Homogenization of nonlinear visco-elastic composites. J. Math. Pures Appl. 89 (2008) 477–504. [CrossRef] [MathSciNet]
  25. J.R. Willis, Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J. Mech. Phys. Solids 25 (1977) 182–202.