Free access
Issue
ESAIM: COCV
Volume 17, Number 4, October-December 2011
Page(s) 1066 - 1087
DOI http://dx.doi.org/10.1051/cocv/2010037
Published online 28 October 2010
  1. C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension. Czechoslovak Math. J. 44 (1994) 109–140. [MathSciNet]
  2. M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 26 (1998) 407–436. [MathSciNet]
  3. M.E. Bogovski, Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Soviet Math. Dokl. 20 (1979) 1094–1098.
  4. J. Bourgain and H. Brezis, New estimates for elliptic equations and Hodge type systems. J. Eur. Math. Soc. 9 (2007) 277–315. [CrossRef]
  5. H. Brezis, Analyse Fonctionnelle, Théorie et Applications. Mathématiques Appliquées pour la Maîtrise, Masson, Paris (1983).
  6. H. Brezis and J. Van Schaftingen, Boundary estimates for elliptic systems with L1-data. Calc. Var. 30 (2007) 369–388. [CrossRef] [MathSciNet]
  7. M. Briane, Homogenization of the Stokes equations with high-contrast viscosity. J. Math. Pures Appl. 82 (2003) 843–876. [CrossRef] [MathSciNet]
  8. M. Briane and J. Casado Díaz, Compactness of sequences of two-dimensional energies with a zero-order term. Application to three-dimensional nonlocal effects. Calc. Var. 33 (2008) 463–492. [CrossRef] [MathSciNet]
  9. M. Camar-Eddine and P. Seppecher, Determination of the closure of the set of elasticity functionals. Arch. Rat. Mech. Anal. 170 (2003) 211–245. [CrossRef]
  10. G. de Rham, Variétés différentiables, Formes, courants, formes harmoniques. Hermann, Paris (1973).
  11. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001).
  12. E. Hopf, Über die Anfwangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4 (1951) 213–231. [MathSciNet]
  13. E.Y. Khruslov, Homogenized models of composite media, in Composite Media and Homogenization Theory, G. Dal Maso and G.F. Dell'Antonio Eds., Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser (1991) 159–182.
  14. O.A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Mathematics and its Applications 2. Gordon and Breach, Science Publishers, New York-London-Paris (1969).
  15. J.-L. Lions, Quelques résultats d'existence dans des équations aux dérivées partielles non linéaires. Bull. S.M.F. 87 (1959) 245–273.
  16. V.A. Marchenko and E.Y. Khruslov, Homogenization of partial differential equations, Progress in Mathematical Physics 46. Birkhäuser, Boston (2006).
  17. J. Nečas, Équations aux dérivées partielles. Presses de l'Université de Montréal (1965).
  18. C. Pideri and P. Seppecher, A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mech. Thermodyn. 9 (1997) 241–257. [CrossRef] [MathSciNet]
  19. M.-J. Strauss, Variations of Korn's and Sobolev's inequalities, in Partial Differential Equations: Proc. Symp. Pure Math. 23, D. Spencer Ed., Am. Math. Soc., Providence (1973) 207–214.
  20. L. Tartar, Topics in nonlinear analysis. Publications Mathématiques d'Orsay 78 (1978) 271.
  21. R. Temam, Navier-Stokes Equations – Theory and Numerical Analysis, Studies in Mathematics and its Applications 2. North-Holland, Amsterdam (1984).
  22. J. Van Schaftingen, Estimates for L1-vector fields under higher-order differential conditions. J. Eur. Math. Soc. 10 (2008) 867–882. [CrossRef]
  23. J. Van Schaftingen, Estimates for L1-vector fields. C. R. Acad. Sci. Paris, Ser. I 339 (2004) 181–186.