Issue |
ESAIM: COCV
Volume 21, Number 2, April-June 2015
|
|
---|---|---|
Page(s) | 348 - 358 | |
DOI | https://doi.org/10.1051/cocv/2014018 | |
Published online | 17 October 2014 |
Shape derivative of the Cheeger constant
1 LATP, Aix-Marseille
Université, 39 rue Joliot
Curie, 13453
Marseille cedex 13,
France.
enea.parini@univ-amu.fr
2 Instituto de Ciencias, University
Nac. Gral Sarmiento, J. M.
Gutierrez 1150, C.P.
1613
Los Polvorines Pcia de Bs. As,
Argentina
3 Dpto Matemática, FCEyN, University de
Buenos Aires, Ciudad Universitaria, Pabellón I (1428)
Buenos Aires,
Argentina.
nsaintie@dm.uba.ar; nsaintie@ungs.edu.ar
Received:
28
November
2013
Revised:
6
March
2014
This paper deals with the existence of the shape derivative of the Cheeger constant h1(Ω) of a bounded domain Ω. We prove that if Ω admits a unique Cheeger set, then the shape derivative of h1(Ω) exists, and we provide an explicit formula. A counter-example shows that the shape derivative may not exist without the uniqueness assumption.
Mathematics Subject Classification: 49Q10 / 49Q20
Key words: Shape derivative / CHEEGER constant / 1-Laplacian
© EDP Sciences, SMAI 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.