Free Access
Issue
ESAIM: COCV
Volume 21, Number 2, April-June 2015
Page(s) 348 - 358
DOI https://doi.org/10.1051/cocv/2014018
Published online 17 October 2014
  1. F. Alter and V. Caselles, Uniqueness of the Cheeger set of a convex body. Nonlin. Anal. 70 (2009) 32–44. [CrossRef] [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press (2000). [Google Scholar]
  3. G. Carlier and M. Comte, On a weighted total variation minimization problem. J. Funct. Anal. 250 (2007) 214–226. [CrossRef] [MathSciNet] [Google Scholar]
  4. V. Caselles, A. Chambolle and M. Novaga, Some remarks on uniqueness and regularity of Cheeger sets, Rendiconti del Seminario Matematico della Università di Padova 123 (2010) 191–202. [Google Scholar]
  5. J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis: A symposium in honor of Salomon Bochner (1970) 195–199. [Google Scholar]
  6. F. Demengel, Functions locally almost 1-harmonic. Appl. Anal. 83 (2004) 865–896. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Garcia-Azorero, J. Manfredi, I. Peral and J.D. Rossi, Steklov eigenvalues for the ∞-Laplacian. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 17 (2006) 199–210. [CrossRef] [Google Scholar]
  8. J. Garcia Melian and J. Sabina De Lis, On the perturbation of eigenvalues for the p-Laplacian. C.R. Acad. Sci. Paris 332 (2001) 893–898. [CrossRef] [MathSciNet] [Google Scholar]
  9. E. Giusti, Minimal surfaces and functions of bounded variation. In vol. 80 of Monogr. Math. Birkhäuser Verlag, Basel (1984). [Google Scholar]
  10. E. Hebey and N. Saintier, Stability and perturbations of the domain for the first eigenvalue of the 1-Laplacian. Arch. Math. 86 (2006) 340–351. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Henrot and M. Pierre, Variation et optimisation de formes. Springer (2005). [Google Scholar]
  12. B. Kawohl and V. Fridman, Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carolin. 44 (2003) 659–667. [MathSciNet] [Google Scholar]
  13. B. Kawohl and T. Lachand-Robert, Characterization of Cheeger sets for convex subsets of the plane. Pacific J. Math. 225 (2006) 103–118. [Google Scholar]
  14. B. Kawohl and F. Schuricht, Dirichlet problems for the 1-Laplace operator, including the eigenvalue problem. Commun. Contemp. Math. 9 (2007) 1–29. [Google Scholar]
  15. D. Krejčiřík and A. Pratelli, The Cheeger constant of curved strips. Pacific J. Math. 254 (2011) 309–333. [Google Scholar]
  16. P.D. Lamberti, A differentiability result for the first eigenvalue of the p-Laplacian upon domain perturbation, Nonlinear analysis and Applications: to V. Lakshmikantham on his 80th birthday. Vol. 1, 2. Kluwer Acad. Publ., Dordrecht (2003) 741–754. [Google Scholar]
  17. J.C. Navarro, J.D. Rossi, N. Saintier and A. San Antolin, The dependence of the first eigenvalue of the ∞-Laplacian with respect to the domain, Glasg. Math. J. 56 (2014) 241–249. [CrossRef] [MathSciNet] [Google Scholar]
  18. E. Parini, An introduction to the Cheeger problem. Surveys Math. Appl. 6 (2011) 9–22. [Google Scholar]
  19. J.D. Rossi and N. Saintier, On the 1st eigenvalue of the ∞-Laplacian with Neumann boundary conditions, To appear in Houston J. [Google Scholar]
  20. N. Saintier, Estimates of the best Sobolev constant of the embedding of BV(Ω) into L1(∂Ω) and related shape optimization problems. Nonlinear Anal. 69 (2008) 2479–2491. [CrossRef] [MathSciNet] [Google Scholar]
  21. E. Stredulinsky and W.P. Ziemer, Area minimizing sets subject to a volume constraint in a convex set. J. Geom. Anal. 7 (1997) 653–677. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.