Issue |
ESAIM: COCV
Volume 3, 1998
|
|
---|---|---|
Page(s) | 329 - 343 | |
DOI | https://doi.org/10.1051/cocv:1998114 | |
Published online | 15 August 2002 |
Duality for the level sum of quasiconvex functions and applications
(michel.volle@univ-avignon.fr)
We study a quasiconvex conjugation that transforms the level sum of functions into the pointwise sum of their conjugates and derive new duality results for the minimization of the max of two quasiconvex functions. Following Barron and al., we show that the level sum provides quasiconvex viscosity solutions for Hamilton-Jacobi equations in which the initial condition is a general continuous quasiconvex function which is not necessarily Lipschitz or bounded.
Résumé
Nous étudions une conjugaison quasiconvexe qui transforme la somme en niveaux de deux fonctions quelconques en la somme de leurs conjuguées. On en déduit de nouveaux résultats de dualité pour la minimisation du max de deux fonctions quasiconvexes. Suivant Barron et al. nous montrons que la somme en niveaux fournit des solutions de viscosité quasiconvexes pour les équations de Hamilton Jacobi dans lesquelles la condition initiale est donnée par une fonction quasiconvexe continue non nécessairement lipschitzienne ni bornée.
Key words: Level sum / quasiconvex duality / Galois correspondence / viscosity solution / Hamilton-Jacobi equations.
© EDP Sciences, SMAI, 1998
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.