Issue |
ESAIM: COCV
Volume 11, Number 3, July 2005
|
|
---|---|---|
Page(s) | 473 - 486 | |
DOI | https://doi.org/10.1051/cocv:2005015 | |
Published online | 15 July 2005 |
Unique continuation and decay for the Korteweg-de Vries equation with localized damping
Instituto de Matemática, Universidade
Federal do Rio de Janeiro, PO Box 68530, CEP 21945-970, Rio de
Janeiro, RJ, Brasil; ademir@acd.ufrj.br
Received:
14
October
2003
Revised:
19
October
2004
This work is devoted to prove the exponential decay for the energy of solutions of the Korteweg-de Vries equation in a bounded interval with a localized damping term. Following the method in Menzala (2002) which combines energy estimates, multipliers and compactness arguments the problem is reduced to prove the unique continuation of weak solutions. In Menzala (2002) the case where solutions vanish on a neighborhood of both extremes of the bounded interval where equation holds was solved combining the smoothing results by T. Kato (1983) and earlier results on unique continuation of smooth solutions by J.C. Saut and B. Scheurer (1987). In this article we address the general case and prove the unique continuation property in two steps. We first prove, using multiplier techniques, that solutions vanishing on any subinterval are necessarily smooth. We then apply the existing results on unique continuation of smooth solutions.
Mathematics Subject Classification: 35B40 / 35Q53
Key words: Unique continuation / decay / stabilization / KdV equation / localized damping.
© EDP Sciences, SMAI, 2005
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.