Issue |
ESAIM: COCV
Volume 18, Number 2, April-June 2012
|
|
---|---|---|
Page(s) | 483 - 500 | |
DOI | https://doi.org/10.1051/cocv/2011102 | |
Published online | 22 June 2011 |
Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds
1
Universidad Nacional del Callao, Universidad Nacional Mayor de San
Marcos, Lima,
Peru
erikpapa@gmail.com
2
PESC-COPPE Federal University of Rio de Janeiro,
Rio de Janeiro,
Brazil
poliveir@cos.ufrj.br
Received: 7 May 2009
Revised: 29 January 2010
In this paper we propose an extension of the proximal point method to solve minimization problems with quasiconvex objective functions on Hadamard manifolds. To reach this goal, we initially extend the concepts of regular and generalized subgradient from Euclidean spaces to Hadamard manifolds and prove that, in the convex case, these concepts coincide with the classical one. For the minimization problem, assuming that the function is bounded from below, in the quasiconvex and lower semicontinuous case, we prove the convergence of the iterations given by the method. Furthermore, under the assumptions that the sequence of proximal parameters is bounded and the function is continuous, we obtain the convergence to a generalized critical point. In particular, our work extends the applications of the proximal point methods for solving constrained minimization problems with nonconvex objective functions in Euclidean spaces when the objective function is convex or quasiconvex on the manifold.
Mathematics Subject Classification: 90C26
Key words: Proximal point method / quasiconvex function / Hadamard manifolds / full convergence.
© EDP Sciences, SMAI, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.