Issue |
ESAIM: COCV
Volume 18, Number 3, July-September 2012
|
|
---|---|---|
Page(s) | 693 - 711 | |
DOI | https://doi.org/10.1051/cocv/2011167 | |
Published online | 29 September 2011 |
Optimal convex shapes for concave functionals
1
Laboratoire de Mathématiques UMR 5127, Université de
Savoie, Campus
Scientifique, 73376
Le-Bourget-du-Lac,
France
2
Dipartimento di Matematica, Politecnico,
Piazza Leonardo da Vinci, 32,
20133
Milano,
Italy
ilaria.fragala@polimi.it
3
Ceremade UMR 7534, Université de Paris-Dauphine,
Place du Maréchal De Lattre De
Tassigny, 75775
Paris Cedex 16,
France
Received:
29
November
2010
Motivated by a long-standing conjecture of Pólya and Szegö about the Newtonian capacity of convex bodies, we discuss the role of concavity inequalities in shape optimization, and we provide several counterexamples to the Blaschke-concavity of variational functionals, including capacity. We then introduce a new algebraic structure on convex bodies, which allows to obtain global concavity and indecomposability results, and we discuss their application to isoperimetric-like inequalities. As a byproduct of this approach we also obtain a quantitative version of the Kneser-Süss inequality. Finally, for a large class of functionals involving Dirichlet energies and the surface measure, we perform a local analysis of strictly convex portions of the boundary via second order shape derivatives. This allows in particular to exclude the presence of smooth regions with positive Gauss curvature in an optimal shape for Pólya-Szegö problem.
Mathematics Subject Classification: 49Q10 / 31A15
Key words: Convex bodies / concavity inequalities / optimization / shape derivatives / capacity
© EDP Sciences, SMAI, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.