Issue |
ESAIM: COCV
Volume 19, Number 2, April-June 2013
|
|
---|---|---|
Page(s) | 438 - 459 | |
DOI | https://doi.org/10.1051/cocv/2012016 | |
Published online | 16 January 2013 |
Asymptotic behaviour and numerical approximation of optimal eigenvalues of the Robin Laplacian∗
1
Group of Mathematical Physics of the University of Lisbon,
Complexo Interdisciplinar, av.
Prof. Gama Pinto 2, 1649-003
Lisboa,
Portugal
pant@cii.fc.ul.pt; jkennedy@cii.fc.ul.pt
2
Department of Mathematics, Universidade Lusófona de Humanidades e
Tecnologias, av. do Campo Grande,
376, 1749-024
Lisboa,
Portugal
3
Department of Mathematics, Faculty of Human Kinetics of the
Technical University of Lisbon and Group of Mathematical Physics of the University of
Lisbon, Complexo Interdisciplinar,
av. Prof. Gama Pinto 2, 1649-003
Lisboa,
Portugal
freitas@cii.fc.ul.pt
4
Institute of Applied Analysis, University of Ulm,
Helmoltzstr. 18, 89069
Ulm,
Germany
Received:
15
November
2011
Revised:
2
April
2012
We consider the problem of minimising the nth-eigenvalue of the Robin Laplacian in RN. Although for n = 1,2 and a positive boundary parameter α it is known that the minimisers do not depend on α, we demonstrate numerically that this will not always be the case and illustrate how the optimiser will depend on α. We derive a Wolf–Keller type result for this problem and show that optimal eigenvalues grow at most with n1/N, which is in sharp contrast with the Weyl asymptotics for a fixed domain. We further show that the gap between consecutive eigenvalues does go to zero as n goes to infinity. Numerical results then support the conjecture that for each n there exists a positive value of αn such that the nth eigenvalue is minimised by n disks for all 0 < α < αn and, combined with analytic estimates, that this value is expected to grow with n1/N.
Mathematics Subject Classification: 35P15 / 35J05 / 49Q10 / 65N25
Key words: Robin Laplacian / eigenvalues / optimisation
P.R.S.A. was supported by Fundação para a Ciência e Tecnologia (FCT), Portugal, through grant SFRH/BPD/47595/2008 and project PTDC/MAT/105475/2008 and by Fundação Calouste Gulbenkian through program Estímulo à Investigação 2009. J.B.K. was partially supported by a grant within the scope of FCT’s project PTDC/MAT/101007/2008 and a fellowship of the Alexander von Humboldt Foundation, Germany. All authors were partially supported by FCT’s projects PTDC/MAT/101007/2008 and PEst-OE/MAT/UI0208/2011.
© EDP Sciences, SMAI, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.