Issue |
ESAIM: COCV
Volume 19, Number 2, April-June 2013
|
|
---|---|---|
Page(s) | 533 - 554 | |
DOI | https://doi.org/10.1051/cocv/2012020 | |
Published online | 21 February 2013 |
Conjugate-cut loci and injectivity domains on two-spheres of revolution∗,∗∗,∗∗∗
1 INRIA, 2004 route des lucioles, 06902 Sophia Antipolis, France
bernard.bonnard@u-bourgogne.fr
2 Institut de Mathématiques de Bourgogne, 9 avenue Savary, 21078 Dijon, France
jean-baptiste.caillau@u-bourgogne.fr; gabriel.janin@u-bourgogne.fr
Received: 28 February 2011
Revised: 24 November 2011
In a recent article [B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 1081–1098], we relate the computation of the conjugate and cut loci of a family of metrics on two-spheres of revolution whose polar form is g = dϕ2 + m(ϕ)dθ2 to the period mapping of the ϕ-variable. One purpose of this article is to use this relation to evaluate the cut and conjugate loci for a family of metrics arising as a deformation of the round sphere and to determine the convexity properties of the injectivity domains of such metrics. These properties have applications in optimal control of space and quantum mechanics, and in optimal transport.
Mathematics Subject Classification: 58B20 / 49K15 / 53C22
Key words: Conjugate and cut loci / injectivity domain / optimal control / optimal transport
© EDP Sciences, SMAI, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.