Issue |
ESAIM: COCV
Volume 25, 2019
|
|
---|---|---|
Article Number | 81 | |
Number of page(s) | 29 | |
DOI | https://doi.org/10.1051/cocv/2017034 | |
Published online | 19 December 2019 |
A novel online gait optimization approach for biped robots with point-feet
1
Computer Department, Iran University of Science and Technology,
Tehran, Iran.
jahedmr@iust.ac.ir
2
Electrical and Computer Department, University of Tehran,
Tehran, Iran.
mnili@ut.ac.ir
Received:
21
August
2016
Received in final form:
14
March
2017
Designing a stable walking gait for biped robots with point-feet is stated as a constrained nonlinear optimization problem which is normally solved by an offline numerical optimization method. On the result of an unknown modeling error or environment change, the designed gait may be ineffective and an online gait improvement is impossible after the optimization. In this paper, we apply Generalized Path Integral Stochastic Optimal Control to closed-loop model of planar biped robots with point-feet which leads to an online Reinforcement Learning algorithm to design the walking gait. We study the ability of the proposed method to adapt the controller of RABBIT, which is a planar biped robot with point-feet, for stable walking. The simulation results show that the method, starting a dynamically unstable initial gait, quickly compensates the modeling error and reaches to a walking with exponential stability and desired features in a new situation which was impossible by the past methods.
Mathematics Subject Classification: 49J15 / 93E35 / 68T40
Key words: Legged locomotion / gait optimization / orbital stability
© EDP Sciences, SMAI 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.