Issue |
ESAIM: COCV
Volume 3, 1998
|
|
---|---|---|
Page(s) | 213 - 233 | |
DOI | https://doi.org/10.1051/cocv:1998107 | |
Published online | 15 August 2002 |
Description of the lack of compactness for the Sobolev imbedding
(Patrick.Gerard@math.u-psud.fr)
We prove that any bounded sequence in a Hilbert homogeneous Sobolev space has a subsequence which can be decomposed as an almost-orthogonal sum of a sequence going strongly to zero in the corresponding Lebesgue space, and of a superposition of terms obtained from fixed profiles by applying sequences of translations and dilations. This decomposition contains in particular the various versions of the concentration-compactness principle.
Résumé
On montre que toute suite bornée d'un espace de Sobolev hilbertien homogène s'écrit, à une sous-suite près, comme la somme presque orthogonale d'une suite tendant vers zéro dans l'espace de Lebesgue correspondant par l'injection de Sobolev, et d'une superposition de suites de translatées-dilatées de profils fixes. On retrouve ainsi les différentes versions du principe de concentration-compacité.
Key words: Concentration-compactness / asymptotic analysis / Sobolev imbedding / almost orthogonality.
© EDP Sciences, SMAI, 1998
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.