Free Access
Volume 4, 1999
Page(s) 667 - 686
Published online 15 August 2002
  1. T. Aubin, Problèmes isopérimétriques et espaces de Sobolev. J. Differential Geom. 11 (1976) 573-598.
  2. T. Aubin, Nonlinear Analysis on manifolds-Monge-Ampère Equations. Grundlehern der Mathematischen Wissenschaften (1982) 252.
  3. A. Bahri and J.M. Coron, On a non linear elliptic equation involving the critical Sobolev exponent: The effet of the topology of the domain. Comm. Pure Appl. Math. 41 (1988) 253-294. [CrossRef] [MathSciNet]
  4. Bobkov and Ch. Houdré, Some connections between isoperimetric and Sobolev type Inequalities. Mem. Amer. Math. Soc. 616 (1997).
  5. F. Demengel, Some compactness result for some spaces of functions with bounded derivatives. Arch. Rational Mech. Anal. 105 (1989) 123-161. [CrossRef] [MathSciNet]
  6. F. Demengel and E. Hebey, On some nonlinear equations involving the p-Laplacian with critical Sobolev growth. I. Adv. Partial Differential Equations 3 (1998) 533-574.
  7. I. Ekeland and R. Temam, Convex Analysis and variational problems. North-Holland (1976).
  8. E. Giusti, Minimal surfaces and functions of bounded variation, notes de cours rédigés par G.H. Williams. Department of Mathematics Australian National University, Canberra (1977), et Birkhaüser (1984).
  9. E. Hebey, La méthode d'isométrie concentration dans le cas d'un problème non linéaire sur les variétés compactes à bord avec exposant critique de Sobolev. Bull. Sci. Math. 116 (1992) 35-51. [MathSciNet]
  10. E. Hebey and M. Vaugon, Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev Growth. J. Funct. Anal. 119 (1994) 298-318. [CrossRef] [MathSciNet]
  11. P.L. Lions, La méthode de compacité concentration, I et II. Revista Ibero Americana 1 (1985) 145.
  12. R.V. Kohn and R. Temam, Dual spaces of stress and strains with applications to Hencky plasticity. Appl. Math. Optim. 10 (1983) 1-35. [CrossRef] [MathSciNet]
  13. B. Nazaret, Stability results for some nonlinear elliptic equations involving the p-Laplacian with critical Sobolev growth, COCV, accepted Version française : Prepublication de l'Université de Cergy-Pontoise N 5/98, Avril 1998.
  14. Talenti, Best constants in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110 (1976) 353-372. [CrossRef] [MathSciNet]
  15. G. Strang and R. Temam, Functions with bounded variations. Arch. Rational Mech. Anal. (1980) 493-527.
  16. P. Suquet, Sur les équations de la plasticité. Ann. Fac. Sci. Toulouse Math. (6) 1 (1979) 77-87.
  17. Ziemmer, Weakly Differentiable functions. Springer Verlag, Lectures Notes in Math. 120 (1989).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.