Free Access
Volume 5, 2000
Page(s) 259 - 278
Published online 15 August 2002
  1. V.A. Ambartsumyan, Scattering and absorption of light in planetary atmospheres. Uchen. Zap. TsAGI 82 (1941), in Russian. [Google Scholar]
  2. S. Chandrasekhar, Radiative Transfer. New York (1960). [Google Scholar]
  3. J.-L. Lions, Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968). [Google Scholar]
  4. V.I. Lebedev and V.I. Agoshkov, The Poincaré-Steklov Operators and their Applications in Analysis. Dept. of Numerical Math. of the USSR Academy of Sciences, Moscow (1983), in Russian. [Google Scholar]
  5. V.I. Agoshkov, Generalized solutions of transport equations and their smoothness properties. Nauka, Moscow (1988), in Russian. [Google Scholar]
  6. V.I. Agoshkov, Reflection operators and domain decomposition methods in transport theory problems. Sov. J. Numer. Anal. Math. Modelling 2 (1987) 325-347. [CrossRef] [Google Scholar]
  7. V.I. Agoshkov, On the existence of traces of functions in spaces used in transport theory problems. Dokl. Akad. Nauk SSSR 288 (1986) 265-269, in Russian. [MathSciNet] [Google Scholar]
  8. V.S. Vladimirov, Mathematical problems of monenergetic particle transport theory. Trudy Mat. Inst. Steklov 61 (1961), in Russian. [Google Scholar]
  9. G.I. Marchuk, Design of Nuclear Reactors. Atomizdat, Moscow (1961), in Russian. [Google Scholar]
  10. V.V. Sobolev, Light Scattering in Planetary Atmospheres. Pergamon Press, Oxford, U.K. (1973). [Google Scholar]
  11. G.I. Marchuk and V.I. Agoshkov, Reflection Operators and Contemporary Applications to Radiative Transfer. Appl. Math. Comput. 80 (1995) 1-19. [Google Scholar]
  12. V.I. Agoshkov, Domain decomposition methods in problems of hydrodynamics. I. Problem plain circulation in ocean. Moscow: Department of Numerical Mathematics, Preprint No. 96 (1985) 12, in Russian. [Google Scholar]
  13. V.I. Agoshkov, Domain decomposition methods and perturbation methods for solving some time dependent problems of fluid dynamics, in Proc. of First International Interdisciplinary Conference. Olympia -91 (1991). [Google Scholar]
  14. V.I. Agoshkov, Control theory approaches in: data assimilation processes, inverse problems, and hydrodynamics. Computer Mathematics and its Applications, HMS/CMA 1 (1994) 21-39. [Google Scholar]
  15. Ill-posed problems in natural Sciences, edited by A.N. Tikhonov. Moscow, Russia - VSP, Netherlands (1992). [Google Scholar]
  16. A.L. Ivankov, Inverse problems for the nonstationary kinetic transport equation. In [15]. [Google Scholar]
  17. A.I. Prilepko, D.G. Orlovskii and I.A. Vasin, Inverse problems in mathematical physics. In [15]. [Google Scholar]
  18. Yu.E. Anikonov, New methods and results in multidimensional inverse problems for kinetic equations. In [15]. [Google Scholar]
  19. E.C. Titchmarsh, Introduction to the Theory of Fourier Integral. New York (1937). [Google Scholar]
  20. C. Bardos, Mathematical approach for the inverse problem in radiative media (1986), not published. [Google Scholar]
  21. K.M. Case, Inverse problem in transport theory. Phys. Fluids 16 (1973) 16-7-1611. [Google Scholar]
  22. L.P. Niznik and V.G. Tarasov, Reverse scattering problem for a transport equation with respect to directions. Preprint, Institute of Mathematics, Academy Sciences of the Ukrainian SSR (1980). [Google Scholar]
  23. K.K. Hunt and N.J. McCormick, Numerical test of an inverse method for estimating single-scattering parameters from pulsed multiple-scattering experiments. J. Opt. Soc. Amer. A. 2 (1985). [Google Scholar]
  24. N.J. McCormick, Recent Development in inverse scattering transport method. Trans. Theory Statist. Phys. 13 (1984) 15-28. [CrossRef] [Google Scholar]
  25. C. Bardos, R. Santos and R. Sentis, Diffusion approximation and the computation of critical size. Trans. Amer. Math. Soc. 284 (1986) 617-649. [Google Scholar]
  26. C. Bardos, R. Caflish and B. Nicolaenko, Different aspect of the Milne problem. Trans. Theory Statist. Phys. 16 (1987) 561-585. [CrossRef] [Google Scholar]
  27. V.P. Shutyaev, Integral reflection operators and solvability of inverse transport problem, in Integral equations in applied modelling. Kiev: Inst. of Electrodynamics, Academy of Sciences of Ukraine, Vol. 2 (1986) 243-244, in Russian. [Google Scholar]
  28. V.I. Agoshkov and C. Bardos, Inverse radiative problems: The problem on boundary function. CMLA, ENS de Cachan, Preprint No. 9801 (1998). [Google Scholar]
  29. V.I. Agoshkov and C. Bardos, Inverse radiative problems: The problem on the right-hand-side function. CMLA, ENS de Cachan, Preprint No. 9802 (1998). [Google Scholar]
  30. V.I. Agoshkov and C. Bardos, Optimal control approach in 3D-inverse radiative problem on boundary function (to appear). [Google Scholar]
  31. V.I. Agoshkov, C. Bardos, E.I. Parmuzin and V.P. Shutyaev, Numerical analysis of iterative algorithms for an inverse boundary transport problem (to appear). [Google Scholar]
  32. S.I. Kabanikhin and A.L. Karchevsky, Optimization methods of solving inverse problems of geoelectrics. In [15]. [Google Scholar]
  33. F. Coron, F. Golse and C. Sulem, A Classification of Well-Posed Kinetic Layer Problems. Comm. Pure Appl. Math. 41 (1988) 409-435. [Google Scholar]
  34. R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, CEA. Masson, Tome 9. [Google Scholar]
  35. R. Glowinski and J.-L. Lions, Exact and approximate controllability for distributed parameter systems. Acta Numer. (1994) 269-378. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.