Free Access
Volume 6, 2001
Page(s) 613 - 627
Published online 15 August 2002
  1. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 9 (1992) 1482-1518. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Allaire and G. Bal, Homogenization of the criticality spectral equation in neutron transport. ESAIM: M2AN 33 (1999) 721-746. [CrossRef] [EDP Sciences] [Google Scholar]
  3. G. Bal, Couplage d'équations et homogénéisation en transport neutronique, Thèse de Doctorat de l'Université Paris 6 (1997). [Google Scholar]
  4. G. Bal, Boundary layer analysis in the homogenization of neutron transport equations in a cubic domain. Asymptot. Anal. 20 (1999) 213-239. [MathSciNet] [Google Scholar]
  5. G. Bal, First-order Corrector for the Homogenization of the Criticality Eigenvalue Problem in the Even Parity Formulation of the Neutron Transport. SIAM J. Math. Anal. 30 (1999) 1208-1240. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Bal, Diffusion Approximation of Radiative Transfer Equations in a Channel. Transport Theory Statist. Phys. (to appear). [Google Scholar]
  7. P. Benoist, Théorie du coefficient de diffusion des neutrons dans un réseau comportant des cavités, Note CEA-R 2278 (1964). [Google Scholar]
  8. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North-Holland (1978). [Google Scholar]
  9. height 2pt depth -1.6pt width 23pt, Boundary Layers and Homogenization of Transport Processes. RIMS, Kyoto Univ. (1979). [Google Scholar]
  10. J. Bergh and L. Löfström, Interpolation spaces. Springer, New York (1976). [Google Scholar]
  11. J. Bussac and P. Reuss, Traité de neutronique. Hermann, Paris (1978). [Google Scholar]
  12. Y. Capdeboscq, Homogenization of a diffusion equation with drift. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 807-812. [Google Scholar]
  13. height 2pt depth -1.6pt width 23pt, Homogenization of a Neutronic Critical Diffusion Problem with Drift. Proc. Roy Soc. Edinburgh Sect. A (accepted). [Google Scholar]
  14. F. Chatelin, Spectral approximation of linear operators. Academic Press, Comp. Sci. Appl. Math. (1983). [Google Scholar]
  15. R. Dautray and J.L. Lions, Mathematical analysis and numerical methods for Science and Technology, Vol. 6. Springer Verlag, Berlin (1993). [Google Scholar]
  16. V. Deniz, The theory of neutron leakage in reactor lattices, in Handbook of nuclear reactor calculations, Vol. II, edited by Y. Ronen (1968) 409-508. [Google Scholar]
  17. J. Garnier, Homogenization in a periodic and time dependent potential. SIAM J. Appl. Math. 57 (1997) 95-111. [CrossRef] [MathSciNet] [Google Scholar]
  18. F. Golse, P.-L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76 (1988) 110-125. [CrossRef] [MathSciNet] [Google Scholar]
  19. T. Kato, Perturbation theory for linear operators. Springer Verlag, Berlin (1976). [Google Scholar]
  20. M.L. Kleptsyna and A.L. Piatnitski, On large deviation asymptotics for homgenized SDE with a small diffusion. Probab. Theory Appl. (submitted). [Google Scholar]
  21. S. Kozlov, Reductibility of quasiperiodic differential operators and averaging. Trans. Moscow Math. Soc. 2 (1984) 101-136. [Google Scholar]
  22. E.W. Larsen, Neutron transport and diffusion in inhomogeneous media. I. J. Math. Phys. 16 (1975) 1421-1427. [CrossRef] [Google Scholar]
  23. height 2pt depth -1.6pt width 23pt, Neutron transport and diffusion in inhomogeneous media. II. Nuclear Sci. Engrg. 60 (1976) 357-368. [Google Scholar]
  24. E.W. Larsen and J.B. Keller, Asymptotic solution of neutron transport problems for small mean free paths. J. Math. Phys. 15 (1974) 75-81. [CrossRef] [Google Scholar]
  25. E.W. Larsen and M. Williams, Neutron Drift in Heterogeneous Media. Nuclear Sci. Engrg. 65 (1978) 290-302. [Google Scholar]
  26. M. Mokhtar-Kharroubi, Mathematical Topics in Neutron Transport Theory. World Scientific, Singapore (1997). [Google Scholar]
  27. J. Planchard, Méthodes mathématiques en neutronique, Collection de la Direction des Études et Recherches d'EDF. Eyrolles (1995). [Google Scholar]
  28. L. Ryzhik, G. Papanicolaou and J.B. Keller, Transport equations for elastic and other waves in random media. Wave Motion 24 (1996) 327-370. [CrossRef] [MathSciNet] [Google Scholar]
  29. R. Sentis, Study of the corrector of the eigenvalue of a transport operator. SIAM J. Math. Anal. 16 (1985) 151-166. [CrossRef] [MathSciNet] [Google Scholar]
  30. M. Struwe, Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems. Springer, Berlin (1990). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.