Free Access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 649 - 674
DOI https://doi.org/10.1051/cocv:2001127
Published online 15 August 2002
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  2. W. Alt, The Lagrange-Newton method for infinite-dimensional optimization problems. Numer. Funct. Anal. Optim. 11 (1990) 201-224. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 35 (1997) 1524-1543. [CrossRef] [MathSciNet] [Google Scholar]
  4. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5: Evolution Problems I. Springer-Verlag, Berlin (1992). [Google Scholar]
  5. A.L. Dontchev, Local analysis of a Newton-type method based on partial linearization, in Proc. of the AMS-SIAM Summer Seminar in Applied Mathematics on Mathematics and Numerical Analysis: Real Number Algorithms, edited by J. Renegar, M. Shub and S. Smale. AMS, Lectures in Appl. Math. 32 (1996) 295-306. [Google Scholar]
  6. A.L. Dontchev, W.W. Hager, A.B. Poore and B. Yang, Optimality, stability, and convergence in optimal control. Appl. Math. Optim. 31 (1995) 297-326. [CrossRef] [MathSciNet] [Google Scholar]
  7. H. Goldberg and F. Tröltzsch, On the Lagrange-Newton-SQP method for the optimal control of semilinear parabolic equations. Optim. Methods Softw. 8 (1998) 225-247. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  8. M. Heinkenschloss and F. Tröltzsch, Analysis of the Lagrange-SQP-Newton Method for the Control of a Phase-Field Equation. Control Cybernet. 28 (1999) 177-211. [MathSciNet] [Google Scholar]
  9. M. Hintermüller, A primal-dual active set algorithm for bilaterally control constrained optimal control problems. Spezialforschungsbereich F 003, Optimierung und Kontrolle, Projektbereich Optimierung und Kontrolle, Bericht No. 146 (submitted). [Google Scholar]
  10. M. Hinze and K. Kunisch, Second order methods for time-dependent fluid flow. Spezialforschungsbereich F 003, Optimierung und Kontrolle, Projektbereich Optimierung und Kontrolle, Bericht No. 165 (submitted). [Google Scholar]
  11. K. Ito and K. Kunisch, Augmented Lagrangian-SQP-Methods for nonlinear optimal control problems of tracking type. SIAM J. Control Optim. 34 (1996) 874-891. [CrossRef] [MathSciNet] [Google Scholar]
  12. K. Kunisch and A. Rösch, Primal-dual strategy for parabolic optimal control problems. Spezialforschungsbereich F 003, Optimierung und Kontrolle, Projektbereich Optimierung und Kontrolle, Bericht No. 154 (submitted). [Google Scholar]
  13. H.V. Ly, K.D. Mease and E.S. Titi, Some remarks on distributed and boundary control of the viscous Burgers equation. Numer. Funct. Anal. Optim. 18 (1997) 143-188. [CrossRef] [MathSciNet] [Google Scholar]
  14. S.M. Robinson, Strongly regular generalized equations. Math. Oper. Res. 5 (1980) 43-62. [CrossRef] [MathSciNet] [Google Scholar]
  15. R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam, Stud. Math. Appl. (1979). [Google Scholar]
  16. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York, Appl. Math. Sci. 68 (1988). [Google Scholar]
  17. F. Tröltzsch, Lipschitz stability of solutions to linear-quadratic parabolic control problems with respect to perturbations. Dynam. Contin. Discrete Impuls. Systems 7 (2000) 289-306. [MathSciNet] [Google Scholar]
  18. F. Tröltzsch, On the Lagrange-Newton-SQP method for the optimal control of semilinear parabolic equations. SIAM J. Control Optim. 38 (1999) 294-312. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Volkwein, Mesh-Independence of an Augmented Lagrangian-SQP Method in Hilbert Spaces and Control Problems for the Burgers Equation, Ph.D. Thesis. Department of Mathematics, Technical University of Berlin (1997). [Google Scholar]
  20. S. Volkwein, Augmented Lagrangian-SQP techniques and optimal control problems for the stationary Burgers equation. Comput. Optim. Appl. 16 (2000) 57-81. [CrossRef] [MathSciNet] [Google Scholar]
  21. S. Volkwein, Distributed control problems for the Burgers equation. Comput. Optim. Appl. 18 (2001) 133-158. [Google Scholar]
  22. S. Volkwein, Optimal control of a phase-field model using the proper orthogonal decomposition. Z. Angew. Math. Mech. 81 (2001) 83-97. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.