Free Access
Volume 7, 2002
Page(s) 521 - 565
Published online 15 September 2002
  1. V. Adolfsson and L. Escauriaza, C1,α domains and unique continuation at the boundary. Comm. Pure Appl. Math. L (1997) 935-969. [Google Scholar]
  2. G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: Bounds on the size of the unknown object. SIAM J. Appl. Math. 58 (1998) 1060-1071. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Alessandrini and L. Rondi, Optimal stability for the inverse problem of multiple cavities. J. Differential Equations 176 (2001) 356-386. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, Optimal stability for inverse elliptic boundary value problems with unknown boundaries. Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) XXIX (2000) 755-806. [Google Scholar]
  5. K. Bryan and L.F. Candill Jr., An inverse problem in thermal imaging. SIAM J. Appl. Math. 56 (1996) 715-735. [CrossRef] [MathSciNet] [Google Scholar]
  6. K. Bryan and L.F. Candill Jr., Uniqueness for boundary identification problem in thermal imaging, in Differential Equations and Computational Simulations III, edited by J. Graef, R. Shivaji, B. Soni and J. Zhu. [Google Scholar]
  7. K. Bryan and L.F. Candill Jr., Stability and reconstruction for an inverse problem for the heat equation. Inverse Problems 14 (1998) 1429-1453. [Google Scholar]
  8. B. Canuto, E. Rosset and S. Vessella, Quantitative estimates of unique continuation for parabolic equations and inverse initial-boundary value problems with unknown boundaries. Trans. AMS 354 (2002) 491-535. [CrossRef] [Google Scholar]
  9. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1. Wiley, New York (1953). [Google Scholar]
  10. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer, New York (1983). [Google Scholar]
  11. V. Isakov, Inverse problems for partial differential equations. Springer, New York (1998). [Google Scholar]
  12. S. Ito and H. Yamabe, A unique continuation theorem for solutions of a parabolic differential equation. J. Math. Soc. Japan 10 (1958) 314-321. [CrossRef] [MathSciNet] [Google Scholar]
  13. O.A. Ladyzhenskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and quasilinear equations of parabolic type. Amer. Math. Soc., Providende, Math. Monographs 23 (1968). [Google Scholar]
  14. E.M. Landis and O.A. Oleinik, Generalized analyticity and some related properties of solutions of elliptic and parabolic equations. Russ. Math. Surveys 29 (1974) 195-212. [CrossRef] [Google Scholar]
  15. F.H. Lin, A uniqueness theorem for parabolic equations. Comm. Pure Appl. Math. XLIII (1990) 127-136. [Google Scholar]
  16. J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications II. Springer, New York (1972). [Google Scholar]
  17. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer, New York (1983). [Google Scholar]
  18. S. Vessella, Stability estimates in an inverse problem for a three-dimensional heat equation. SIAM J. Math. Anal. 28 (1997) 1354-1370. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.