Free Access
Issue |
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
|
|
---|---|---|
Page(s) | 143 - 167 | |
DOI | https://doi.org/10.1051/cocv:2002058 | |
Published online | 15 August 2002 |
- S.A. Avdonin, M.I. Belishev and S.A. Ivanov, The controllability in the filled domain for the higher dimensional wave equation with the singular boundary control. Zapiski Nauch. Semin. POMI 210 (1994) 7-21. English translation: J. Math. Sci. 83 (1997). [Google Scholar]
- C. Bardos, T. Masrour and F. Tatout, Observation and control of Elastic waves. IMA Vol. in Math. Appl. Singularities and Oscillations 191 (1996) 1-16. [Google Scholar]
- M.I. Belishev, Canonical model of a dynamical system with boundary control in the inverse problem of heat conductivity. St-Petersburg Math. J. 7 (1996) 869-890. [MathSciNet] [Google Scholar]
- M.I. Belishev, Boundary control in reconstruction of manifolds and metrics (the BC-method). Inv. Prob. 13 (1997) R1-R45. [CrossRef] [Google Scholar]
- M.I. Belishev, On relations between spectral and dynamical inverse data. J. Inv. Ill-Posed Problems 9 (2001) 547-565. [Google Scholar]
- M.I. Belishev, Dynamical systems with boundary control: Models and characterization of inverse data. Inv. Prob. 17 (2001) 659-682. [CrossRef] [Google Scholar]
- M.I. Belishev and A.K. Glasman, Boundary control of the Maxwell dynamical system: Lack of controllability by topological reasons. ESAIM: COCV 5 (2000) 207-217. [CrossRef] [EDP Sciences] [Google Scholar]
- M.S. Birman and M.Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space. D. Reidel Publishing Comp. (1987). [Google Scholar]
- M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and stability in the Cauchy problem for maxwell's and elasticity systems, in Nonlinear PDE, College de France Seminar J.-L. Lions. Series in Appl. Math. 7 (2002). [Google Scholar]
- V. Isakov, Inverse Problems for Partial Differential Equations. Springer-Verlag, New-York (1998). [Google Scholar]
- F. John, On linear partial differential equations with analytic coefficients. Unique continuation of data. Comm. Pure Appl. Math. 2 (1948) 209-253. [CrossRef] [MathSciNet] [Google Scholar]
- M.G. Krein, On the problem of extension of the Hermitian positive continuous functions. Dokl. Akad. Nauk SSSR 26 (1940) 17-21. [Google Scholar]
- I. Lasiecka, J.-L. Lions and R. Triggiani, Non homogeneous boundary value problems for second order hyperbolic operators. J. Math. Pures Appl. 65 (1986) 149-192. [MathSciNet] [Google Scholar]
- I. Lasiecka, Uniform decay rates for full von Karman system of dynamic thermoelasticity with free boundary conditions and partial boundary dissipation. Comm. on PDE's 24 (1999) 1801-1849. [CrossRef] [Google Scholar]
- I. Lasiecka and R. Triggiani, A cosine operator approach to modeling L2 boundary input hyperbolic equations. Appl. Math. Optim. 7 (1981) 35-93. [Google Scholar]
- I. Lasiecka and R. Triggiani, A lifting theorem for the time regularity of solutions to abstract equations with unbounded operators and applications to hyperbolic equations. Proc. AMS 104 (1988) 745-755. [Google Scholar]
- R. Leis, Initial boundary value problems in Mathematical Physics. John Wiley - Sons LTD and B.G. Teubner, Stuttgart (1986). [Google Scholar]
- D.L. Russell, Boundary value control theory of the higher dimensional wave equation. SIAM J. Control 9 (1971) 29-42. [CrossRef] [MathSciNet] [Google Scholar]
- M. Sova, Cosine Operator Functions. Rozprawy matematyczne XLIX (1966). [Google Scholar]
- D. Tataru, Unique continuation for solutions of PDE's: Between Hormander's and Holmgren theorem. Comm. PDE 20 (1995) 855-894. [CrossRef] [Google Scholar]
- N. Weck, Aussenraumaufgaben in der Theorie station ärer Schwingungen inhomogener elastischer Körper. Math. Z. 111 (1969) 387-398. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.