Free Access
Volume 8, 2002
A tribute to JL Lions
Page(s) 741 - 760
Published online 15 August 2002
  1. F. Allgöwer, T. Badgwell, J. Qin, J. Rawlings and S. Wright, Nonlinear predictive control and moving horizon estimation - an introductory overview, Advances in Control, edited by P. Frank. Springer (1999) 391-449.
  2. T.R. Bewley, Flow control: New challenges for a new Renaissance. Progr. Aerospace Sci. 37 (2001) 21-58. [CrossRef]
  3. H. Chen and F. Allgöwer, A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34 (1998) 1205-1217. [CrossRef] [MathSciNet]
  4. H. Choi, M. Hinze and K. Kunisch, Instantaneous control of backward facing step flow. Appl. Numer. Math. 31 (1999) 133-158. [CrossRef] [MathSciNet]
  5. H. Choi, R. Temam, P. Moin and J. Kim, Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253 (1993) 509-543. [CrossRef] [MathSciNet]
  6. R.A. Freeman and P.V. Kokotovic, Robust Nonlinear Control Design, State-Space an Lyapunov Techiques. Birkhäuser, Boston (1996).
  7. W.H. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, New York (1993).
  8. C.E. Garcia, D.M. Prett and M. Morari, Model predictive control: Theory and practice - a survey. Automatica 25 (1989) 335-348. [CrossRef]
  9. M. Hinze and S. Volkwein, Analysis of instantaneous control for the Burgers equation. Nonlinear Analysis TMA (to appear).
  10. K. Ito and K. Kunisch, On asymptotic properties of receding horizon optimal control. SIAM J. Control Optim (to appear).
  11. A. Jadababaie, J. Yu and J. Hauser, Unconstrained receding horizon control of nonlinear systems. Preprint.
  12. D.L. Kleinman, An easy way to stabilize a linear constant system. IEEE Trans. Automat. Control 15 (1970) 692-712. [CrossRef]
  13. D.Q. Mayne and H. Michalska, Receding horizon control of nonlinear systems. IEEE Trans. Automat. Control 35 (1990) 814-824. [CrossRef] [MathSciNet]
  14. V. Nevistic and J. A. Primbs, Finite receding horizon control: A general framework for stability and performance analysis. Preprint.
  15. J.A. Primbs, V. Nevistic and J.C. Doyle, A receding horizon generalization of pointwise min-norm controllers. Preprint.
  16. P. Scokaert, D.Q. Mayne and J.B. Rawlings, Suboptimal predictive control (Feasibility implies stability). IEEE Trans. Automat. Control 44 (1999) 648-654. [CrossRef] [MathSciNet]
  17. F. Tanabe, Equations of Evolution. Pitman, London (1979).
  18. R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis. North Holland, Amsterdam (1984).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.