Free Access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 741 - 760
DOI https://doi.org/10.1051/cocv:2002032
Published online 15 August 2002
  1. F. Allgöwer, T. Badgwell, J. Qin, J. Rawlings and S. Wright, Nonlinear predictive control and moving horizon estimation - an introductory overview, Advances in Control, edited by P. Frank. Springer (1999) 391-449. [Google Scholar]
  2. T.R. Bewley, Flow control: New challenges for a new Renaissance. Progr. Aerospace Sci. 37 (2001) 21-58. [CrossRef] [Google Scholar]
  3. H. Chen and F. Allgöwer, A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34 (1998) 1205-1217. [CrossRef] [MathSciNet] [Google Scholar]
  4. H. Choi, M. Hinze and K. Kunisch, Instantaneous control of backward facing step flow. Appl. Numer. Math. 31 (1999) 133-158. [CrossRef] [MathSciNet] [Google Scholar]
  5. H. Choi, R. Temam, P. Moin and J. Kim, Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253 (1993) 509-543. [CrossRef] [MathSciNet] [Google Scholar]
  6. R.A. Freeman and P.V. Kokotovic, Robust Nonlinear Control Design, State-Space an Lyapunov Techiques. Birkhäuser, Boston (1996). [Google Scholar]
  7. W.H. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, New York (1993). [Google Scholar]
  8. C.E. Garcia, D.M. Prett and M. Morari, Model predictive control: Theory and practice - a survey. Automatica 25 (1989) 335-348. [CrossRef] [Google Scholar]
  9. M. Hinze and S. Volkwein, Analysis of instantaneous control for the Burgers equation. Nonlinear Analysis TMA (to appear). [Google Scholar]
  10. K. Ito and K. Kunisch, On asymptotic properties of receding horizon optimal control. SIAM J. Control Optim (to appear). [Google Scholar]
  11. A. Jadababaie, J. Yu and J. Hauser, Unconstrained receding horizon control of nonlinear systems. Preprint. [Google Scholar]
  12. D.L. Kleinman, An easy way to stabilize a linear constant system. IEEE Trans. Automat. Control 15 (1970) 692-712. [CrossRef] [Google Scholar]
  13. D.Q. Mayne and H. Michalska, Receding horizon control of nonlinear systems. IEEE Trans. Automat. Control 35 (1990) 814-824. [CrossRef] [MathSciNet] [Google Scholar]
  14. V. Nevistic and J. A. Primbs, Finite receding horizon control: A general framework for stability and performance analysis. Preprint. [Google Scholar]
  15. J.A. Primbs, V. Nevistic and J.C. Doyle, A receding horizon generalization of pointwise min-norm controllers. Preprint. [Google Scholar]
  16. P. Scokaert, D.Q. Mayne and J.B. Rawlings, Suboptimal predictive control (Feasibility implies stability). IEEE Trans. Automat. Control 44 (1999) 648-654. [CrossRef] [MathSciNet] [Google Scholar]
  17. F. Tanabe, Equations of Evolution. Pitman, London (1979). [Google Scholar]
  18. R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis. North Holland, Amsterdam (1984). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.