Free Access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 775 - 799
DOI https://doi.org/10.1051/cocv:2002042
Published online 15 August 2002
  1. A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comp. 68 (1999) 607-631. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Belishev and A. Glasman, Boundary control of the Maxwell dynamical system: Lack of controllability by topological reason. ESAIM: COCV 5 (2000) 207-218. [CrossRef] [EDP Sciences] [Google Scholar]
  3. J.-D. Benamou, Décomposition de domaine pour le contrôle de systèmes gouvernés par des équations d'évolution. C. R. Acad. Sci Paris Sér. I Math. 324 (1997) 1065-1070. [Google Scholar]
  4. J.-D. Benamou, Domain decomposition, optimal control of systems governed by partial differential equations and synthesis of feedback laws. J. Opt. Theory Appl. 102 (1999) 15-36. [CrossRef] [Google Scholar]
  5. J.-D. Benamou and B. Desprès, A domain decomposition method for the Helmholtz equation and related optimal control problems. J. Comp. Phys. 136 (1997) 68-82. [CrossRef] [Google Scholar]
  6. M. Gander, L. Halpern and F. Nataf, Optimal Schwarz waveform relaxation for the one dimensional wave equation. École Polytechnique, Palaiseau, Rep. 469 (2001). [Google Scholar]
  7. M. Heinkenschloss, Time domain decomposition iterative methods for the solution of distributed linear quadratic optimal control problems (submitted). [Google Scholar]
  8. J.E. Lagnese, A nonoverlapping domain decomposition for optimal boundary control of the dynamic Maxwell system, in Control of Nonlinear Distributed Parameter Systems, edited by G. Chen, I. Lasiecka and J. Zhou. Marcel Dekker (2001) 157-176. [Google Scholar]
  9. J.E. Lagnese, Exact boundary controllability of Maxwell's equation in a general region. SIAM J. Control Optim. 27 (1989) 374-388. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.E. Lagnese and G. Leugering, Dynamic domain decomposition in approximate and exact boundary control problems of transmission for the wave equation. SIAM J. Control Optim. 38/2 (2000) 503-537. [Google Scholar]
  11. J.E. Lagnese, A singular perturbation problem in exact controllability of the Maxwell system. ESAIM: COCV 6 (2001) 275-290. [CrossRef] [EDP Sciences] [Google Scholar]
  12. J.-L. Lions, Virtual and effective control for distributed parameter systems and decomposition of everything. J. Anal. Math. 80 (2000) 257-297. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.-L. Lions, Decomposition of energy space and virtual control for parabolic systems, in 12th Int. Conf. on Domain Decomposition Methods, edited by T. Chan, T. Kako, H. Kawarada and O. Pironneau (2001) 41-53. [Google Scholar]
  14. J.-L. Lions and O. Pironneau, Domain decomposition methods for C.A.D. C. R. Acad. Sci. Paris 328 (1999) 73-80. [Google Scholar]
  15. Kim Dang Phung, Contrôle et stabilisation d'ondes électromagnétiques. ESAIM: COCV 5 (2000) 87-137. [CrossRef] [EDP Sciences] [Google Scholar]
  16. J.E. Santos, Global and domain decomposed mixed methods for the solution of Maxwell's equations with applications to magneotellurics. Num. Meth. for PDEs 14/4 (2000) 407-438. [Google Scholar]
  17. H. Schaefer, Über die Methode sukzessiver Approximationen. Jber Deutsch. Math.-Verein 59 (1957) 131-140. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.