A tribute to JL Lions
Free Access
Volume 8, 2002
A tribute to JL Lions
Page(s) 827 - 862
DOI https://doi.org/10.1051/cocv:2002025
Published online 15 August 2002
  1. J. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semi-linear control systems. Comm. Pure Appl. Math. 37 (1979) 555-587. [CrossRef] [MathSciNet] [Google Scholar]
  2. E. Crépeau, Exact Controllability of the Boussinesq Equation on a Bounded Domain. Adv. Differential Equations (to appear). [Google Scholar]
  3. A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire. J. Math. Pures Appl. 68 (1989) 457-465. [MathSciNet] [Google Scholar]
  4. A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41 (1967) 367-379. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.A. Infante and E. Zuazua, Boundary observability for the space semi-discretizations of the 1-d wave equation. Math. Model. Numer. Anal. 33 (1999) 407-438. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  6. E. Isaacson and H.B. Keller, Analysis of numerical methods. John Wiley and Sons (1966). [Google Scholar]
  7. V. Komornik, Exact controllability and stabilization: The multiplier method. Masson and John Wiley, RAM 36 (1994). [Google Scholar]
  8. G. Lebeau, Contrôle de l' équation Schrödinger. J. Math. Pures Appl. 71 (1992) 267-291. [MathSciNet] [Google Scholar]
  9. L. León, Controle Exato da Equaç ao da Viga 1-D Semi-discretizada no Espaço por Diferenças Finitas, Ph.D. Thesis. Instituto de Matemática, Universidade Federal de Rio de Janeiro (2001). [Google Scholar]
  10. J.L. Lions, Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués, Tome 1. Masson, RMA 8, Paris (1988). [Google Scholar]
  11. J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vols. 1 and 2. Dunod, Paris (1968). [Google Scholar]
  12. S. Micu, Uniform Boundary Controllability of a Semi-Discrete 1-D Wave Equation. Numer. Math. (to appear). [Google Scholar]
  13. S. Micu and E. Zuazua, Boundary controllability of a linear hybrid system arising in the control of noise. SIAM J. Control Optim. 35 (1997) 1614-1637. [Google Scholar]
  14. J. Simon, Compact sets in the space LP(0,T,B). Ann. Mat. Pura Appl. CXLVI (1987) 65-96. [Google Scholar]
  15. J.C. Strikwerda, Finite difference schemes and partial differential equation. Chapman and Hall (1995). [Google Scholar]
  16. J.W. Thomas, Numerical partial differential equations; finite difference methods. Springer, Texts Appl. Math. 22 (1995). [Google Scholar]
  17. R.M. Young, An introduction to nonharmonic Fourier series. Academic Press, Pure Appl. Math. A Series of Monographs and Textbooks (1980). [Google Scholar]
  18. E. Zuazua, Boundary observability for the finite space semi-discretization of the 2-d wave equation in the square. J. Math. Pures Appl. 78 (1999) 523-563. [Google Scholar]
  19. E. Zuazua, Contrôlabilité exacte en un temps arbitrairement petit de quelques modèles de plaques. Appendix I in [] (1988) 465-491. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.