Free Access
Issue
ESAIM: COCV
Volume 9, February 2003
Page(s) 169 - 196
DOI https://doi.org/10.1051/cocv:2003007
Published online 15 September 2003
  1. M. Brokate, Hysteresis operators, in Phase Transitions and Hysteresis, edited by A. Visintin. Springer-Verlag, Berlin (1994) 1-38. [Google Scholar]
  2. M. Brokate and J. Sprekels, Hysteresis and Phase Transitions. Springer-Verlag, New York (1996). [Google Scholar]
  3. C. Corduneanu, Almost Periodic Functions, 2nd Edition. Chelsea Publishing Company, New York (1989). [Google Scholar]
  4. R.F. Curtain, H. Logemann and O. Staffans, Stability results of Popov-type for infinite-dimensional systems with applications to integral control, Mathematics Preprint 01/09. University of Bath (2001). Proc. London Math. Soc. (to appear). Available at http://www.maths.bath.ac.uk/MATHEMATICS/preprints.html [Google Scholar]
  5. R.F. Curtain and G. Weiss, Well-posedness of triples of operators in the sense of linear systems theory, in Control and Estimation of Distributed Parameter System, edited by F. Kappel, K. Kunisch and W. Schappacher. Birkhäuser Verlag, Basel (1989) 41-59. [Google Scholar]
  6. G. Gripenberg, S.-O. Londen and O.J. Staffans, Volterra Integral and Functional Equations. Cambridge University Press, Cambridge (1990). [Google Scholar]
  7. W. Hahn, Stability of Motion. Springer-Verlag, Berlin (1967). [Google Scholar]
  8. M.A. Krasnosel'skii and A.V. Pokrovskii. Systems with Hysteresis. Springer-Verlag, Berlin (1989). [Google Scholar]
  9. H. Logemann and A.D. Mawby, Low-gain integral control of infinite-dimensional regular linear systems subject to input hysteresis, in Advances in Mathematical Systems Theory, edited by F. Colonius et al. Birkhäuser, Boston (2001) 255-293. [Google Scholar]
  10. H. Logemann and E.P. Ryan, Time-varying and adaptive integral control of infinite-dimensional regular linear systems with input nonlinearities. SIAM J. Control Optim. 38 (2000) 1120-1144. [CrossRef] [MathSciNet] [Google Scholar]
  11. J.W. Macki, P. Nistri and P. Zecca, Mathematical models for hysteresis. SIAM Rev. 35 (1993) 94-123. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). [Google Scholar]
  13. D. Salamon, Realization theory in Hilbert space. Math. Systems Theory 21 (1989) 147-164. [CrossRef] [MathSciNet] [Google Scholar]
  14. D. Salamon, Infinite-dimensional linear systems with unbounded control and observation: A functional analytic approach. Trans. Amer. Math. Soc. 300 (1987) 383-431. [Google Scholar]
  15. O.J. Staffans, Well-Posed Linear Systems. Book manuscript (in preparation). Available at http://www.abo.fi/ staffans/ [Google Scholar]
  16. O.J. Staffans, J-energy preserving well-posed linear systems. Int. J. Appl. Math. Comput. Sci. 11 (2001) 1361-1378. [MathSciNet] [Google Scholar]
  17. O.J. Staffans, Quadratic optimal control of stable well-posed linear systems. Trans. Amer. Math. Soc. 349 (1997) 3679-3715. [CrossRef] [MathSciNet] [Google Scholar]
  18. O.J. Staffans and G. Weiss, Transfer functions of regular linear systems, Part II: The system operator and the Lax-Phillips semigroup. Trans. Amer. Math. Soc. 354 (2002) 3229-3262. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Vidyasagar, Nonlinear Systems Analysis, 2nd Edition. Prentice Hall, Englewood Cliffs, NJ (1993). [Google Scholar]
  20. G. Weiss, Transfer functions of regular linear systems, Part I: Characterization of regularity. Trans. Amer. Math. Soc. 342 (1994) 827-854. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Weiss, The representation of regular linear systems on Hilbert spaces, in Control and Estimation of Distributed Parameter System, edited by F. Kappel, K. Kunisch and W. Schappacher. Birkhäuser Verlag, Basel (1989) 401-416. [Google Scholar]
  22. V.A. Yakubovich, The conditions for absolute stability of a control system with a hysteresis-type nonlinearity. Soviet Phys. Dokl. 8 (1963) 235-237 (translated from Dokl. Akad. Nauk SSSR 149 (1963) 288-291). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.