Free Access

This article has an erratum: []

Volume 10, Number 3, July 2004
Page(s) 426 - 451
Published online 15 June 2004
  1. G. Alberti, On the structure of singular sets of convex functions. Calc. Var. Partial Differ. Equ. 2 (1994) 17-27. [CrossRef] [Google Scholar]
  2. A. Ambrosetti and G. Prodi, A primer of nonlinear analysis. Cambridge University Press, Cambridge (1993). [Google Scholar]
  3. L. Ambrosio, P. Cannarsa and H.M. Soner, On the propagation of singularities of semi-convex functions. Ann. Scuola. Norm. Sup. Pisa XX (1993) 597-616. [Google Scholar]
  4. P. Cannarsa, A. Mennucci and C. Sinestrari, Regularity results for solutions of a class of Hamilton-Jacobi equations. Arch. Ration. Mech. Anal. 140 (1997) 197-223 (or, preprint 13-95 Dip. Mat. Univ Tor Vergata, Roma). [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Courant and D. Hilbert, Methods of Mathematical Physics, volume II. Interscience, New York (1963). [Google Scholar]
  6. T. Djaferis and I. Schick, Eds., Advances in System Theory. Kluwer Academic Publishers Boston, October (1999). [Google Scholar]
  7. L.C. Evans, Partial Differential Equations. A.M.S. Grad. Stud. Math. 19 (2002). [Google Scholar]
  8. H. Federer, Geometric measure theory. Springer-Verlag, Berlin (1969). [Google Scholar]
  9. W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions. Springer-Verlag, Berlin (1993). [Google Scholar]
  10. P. Hartman, Ordinary Differential Equations. Wiley, New York (1964). [Google Scholar]
  11. J. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus. Trans. Amer. Math. Soc. 353 (2000) 21-40. [CrossRef] [MathSciNet] [Google Scholar]
  12. S.N. Kružhkov, The cauchy problem in the large for certain non-linear first order differential equations. Soviet Math. Dockl. 1 (1960) 474-475. [Google Scholar]
  13. Yan yan Li and L. Nirenberg, The distance function to the boundary, finsler geometry and the singular set of viscosity solutions of some Hamilton-Jacobi equations (2003) (preprint). [Google Scholar]
  14. P.L. Lions, Generalized Solutions of Hamilton-Jacobi Equations. Pitman, Boston (1982). [Google Scholar]
  15. C. Mantegazza and A.C. Mennucci, Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47 (2003) 1-25. [CrossRef] [MathSciNet] [Google Scholar]
  16. D. McDuff and D. Salomon, Introduction to Symplectic Topology. Oxford Mathematical Monograph, Oxford University Press, Clarendon Press, Oxford (1995). [Google Scholar]
  17. A.C.G. Mennucci, Regularity and variationality of solutions to Hamilton-Jacobi equations. Part ii: variationality, existence, uniqueness (in preparation). [Google Scholar]
  18. C. Sinestrari and P. Cannarsa, Semiconcave functions, Hamilton-Jacobi equations and optimal control problems, in Progress in Nonlinear Differential Equations and Their Applications, Vol. 58, Birkhauser Boston (2004). [Google Scholar]
  19. G.J. Galloway, P.T. Chruściel, J.H.G. Fu and R. Howard, On fine differentiability properties of horizons and applications to Riemannian geometry (to appear). [Google Scholar]
  20. C. Pignotti, Rectifiability results for singular and conjugate points of optimal exit time problems. J. Math. Anal. Appl. 270 (2002) 681-708. [CrossRef] [MathSciNet] [Google Scholar]
  21. L. Simon, Lectures on Geometric Measure Theory, Vol. 3 of Proc. Center for Mathematical Analysis. Australian National University, Canberra (1983). [Google Scholar]
  22. Y. Yomdin, β-spreads of sets in metric spaces and critical values of smooth functions. [Google Scholar]
  23. Y. Yomdin, The geometry of critical and near-critical values of differential mappings. Math. Ann. 4 (1983) 495-515. [CrossRef] [Google Scholar]
  24. Y. Yomdin, Metric properties of semialgebraic sets and mappings and their applications in smooth analysis, in Géométrie algébrique et applications, III (la Rábida, 1984), Herman, Paris (1987) 165-183. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.