Free Access
Issue
ESAIM: COCV
Volume 10, Number 4, October 2004
Page(s) 634 - 655
DOI https://doi.org/10.1051/cocv:2004024
Published online 15 October 2004
  1. R. Abraham and J. Robbin, Transversal mappings and flows. W.A. Benjamin, Inc. (1967).
  2. A. Agrachev, El-A. Chakir, El-H. and J.P. Gauthier, Sub-Riemannian metrics on R3, in Geometric Control and non-holonomic mechanics, Mexico City (1996) 29-76, Canad. Math. Soc. Conf. Proc. 25, Amer. Math. Soc., Providence, RI (1998).
  3. A. Agrachev and J.P. Gauthier, Sub-Riemannian Metrics and Isoperimetric Problems in the Contact case, L.S. Pontriaguine, 90th Birthday Commemoration, Contemporary Mathematics 64 (1999) 5-48 (Russian). English version: J. Math. Sci. 103, 639-663.
  4. M.W. Hirsch, Differential Topology. Springer-Verlag (1976).
  5. El-A. Chakir, El-H., J.P. Gauthier and I. Kupka, Small Sub-Riemannian balls on R3. J. Dynam. Control Syst. 2 (1996) 359-421. [CrossRef]
  6. G. Charlot, Quasi-Contact sub-Riemannian Metrics, Normal Form in R2n, Wave front and Caustic in R4. Acta Appl. Math. 74 (2002) 217-263. [CrossRef] [MathSciNet]
  7. K. Goldberg, D. Halperin, J.C. Latombe and R. Wilson, Algorithmic foundations of robotics. AK Peters, Wellesley, Mass. (1995).
  8. Mc Pherson Goreski, Stratified Morse Theory. Springer-Verlag, New York (1988).
  9. M. Gromov, Carnot-Caratheodory spaces seen from within, in Sub-Riemannian geometry. A. Bellaiche, J.J. Risler Eds., Birkhauser (1996) 79-323.
  10. F. Jean, Complexity of nonholonomic motion planning. Internat. J. Control 74 (2001) 776-782. [CrossRef] [MathSciNet]
  11. F. Jean, Entropy and Complexity of a Path in Sub-Riemannian Geometry. ESAIM: COCV 9 (2003) 485-508. [CrossRef] [EDP Sciences]
  12. F. Jean and E. Falbel, Measures and transverse paths in Sub-Riemannian Geometry. J. Anal. Math. 91 (2003) 231-246. [CrossRef] [MathSciNet]
  13. T. Kato, Perturbation theory for linear operators. Springer-Verlag (1966) 120-122.
  14. I. Kupka, Géometrie sous-Riemannienne, in Séminaire Bourbaki, 48e année, No. 817 (1995-96) 1-30.
  15. G. Lafferiere and H. Sussmann, Motion Planning for controllable systems without drift, in Proc. of the 1991 IEEE Int. Conf. on Robotics and Automation (1991).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.