Free Access
Issue
ESAIM: COCV
Volume 10, Number 4, October 2004
Page(s) 634 - 655
DOI https://doi.org/10.1051/cocv:2004024
Published online 15 October 2004
  1. R. Abraham and J. Robbin, Transversal mappings and flows. W.A. Benjamin, Inc. (1967). [Google Scholar]
  2. A. Agrachev, El-A. Chakir, El-H. and J.P. Gauthier, Sub-Riemannian metrics on R3, in Geometric Control and non-holonomic mechanics, Mexico City (1996) 29-76, Canad. Math. Soc. Conf. Proc. 25, Amer. Math. Soc., Providence, RI (1998). [Google Scholar]
  3. A. Agrachev and J.P. Gauthier, Sub-Riemannian Metrics and Isoperimetric Problems in the Contact case, L.S. Pontriaguine, 90th Birthday Commemoration, Contemporary Mathematics 64 (1999) 5-48 (Russian). English version: J. Math. Sci. 103, 639-663. [Google Scholar]
  4. M.W. Hirsch, Differential Topology. Springer-Verlag (1976). [Google Scholar]
  5. El-A. Chakir, El-H., J.P. Gauthier and I. Kupka, Small Sub-Riemannian balls on R3. J. Dynam. Control Syst. 2 (1996) 359-421. [CrossRef] [Google Scholar]
  6. G. Charlot, Quasi-Contact sub-Riemannian Metrics, Normal Form in R2n, Wave front and Caustic in R4. Acta Appl. Math. 74 (2002) 217-263. [CrossRef] [MathSciNet] [Google Scholar]
  7. K. Goldberg, D. Halperin, J.C. Latombe and R. Wilson, Algorithmic foundations of robotics. AK Peters, Wellesley, Mass. (1995). [Google Scholar]
  8. Mc Pherson Goreski, Stratified Morse Theory. Springer-Verlag, New York (1988). [Google Scholar]
  9. M. Gromov, Carnot-Caratheodory spaces seen from within, in Sub-Riemannian geometry. A. Bellaiche, J.J. Risler Eds., Birkhauser (1996) 79-323. [Google Scholar]
  10. F. Jean, Complexity of nonholonomic motion planning. Internat. J. Control 74 (2001) 776-782. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Jean, Entropy and Complexity of a Path in Sub-Riemannian Geometry. ESAIM: COCV 9 (2003) 485-508. [CrossRef] [EDP Sciences] [Google Scholar]
  12. F. Jean and E. Falbel, Measures and transverse paths in Sub-Riemannian Geometry. J. Anal. Math. 91 (2003) 231-246. [CrossRef] [MathSciNet] [Google Scholar]
  13. T. Kato, Perturbation theory for linear operators. Springer-Verlag (1966) 120-122. [Google Scholar]
  14. I. Kupka, Géometrie sous-Riemannienne, in Séminaire Bourbaki, 48e année, No. 817 (1995-96) 1-30. [Google Scholar]
  15. G. Lafferiere and H. Sussmann, Motion Planning for controllable systems without drift, in Proc. of the 1991 IEEE Int. Conf. on Robotics and Automation (1991). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.