Free Access
Volume 10, Number 4, October 2004
Page(s) 677 - 691
Published online 15 October 2004
  1. R. Adams, Sobolev spaces. Academic Press, New York (1975). [Google Scholar]
  2. A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973) 349-381. [CrossRef] [Google Scholar]
  3. K.C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981) 102-129. [CrossRef] [MathSciNet] [Google Scholar]
  4. F.H. Clarke, Optimization and nonsmooth analysis. SIAM, Philadelphia (1990). [Google Scholar]
  5. P. Clément, M. García-Huidobro, R. Manásevich and K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations. Calc. Var. 11 (2000) 33-62. [CrossRef] [MathSciNet] [Google Scholar]
  6. T. Donaldson, Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces. J. Diff. Equations 10 (1971) 507-528. [CrossRef] [Google Scholar]
  7. T. Donaldson and N. Trudinger, Orlicz-Sobolev spaces and imbedding theorems. J. Funct. Anal. 8 (1971) 52-75. [CrossRef] [Google Scholar]
  8. M. García-Huidobro, V.K. Le, R. Manásevich and K. Schmitt, On principal eigenvalues for quasilinear elliptic differential operators: An Orlicz-Sobolev space setting. Nonlinear Diff. Eq. Appl. 6 (1999) 207-225. [CrossRef] [Google Scholar]
  9. J.P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly or slowly increasing coefficients. Trans. Amer. Math. Soc. 190 (1974) 163-205. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.P. Gossez and R. Manásevich, On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces. Proc. Roy. Soc. Edinb. A 132 (2002) 891-909. [CrossRef] [Google Scholar]
  11. J.P. Gossez and V. Mustonen, Variational inequalities in Orlicz-Sobolev spaces. Nonlinear Anal. 11 (1987) 379-392. [CrossRef] [MathSciNet] [Google Scholar]
  12. L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on Formula . Proc. Roy. Soc. Edinb. A 129 (1999) 787-809. [Google Scholar]
  13. L. Jeanjean and J.F. Toland, Bounded Palais-Smale mountain-pass sequences. C.R. Acad. Sci. Paris Ser. I Math. 327 (1998) 23-28. [CrossRef] [MathSciNet] [Google Scholar]
  14. N.C. Kourogenis and N.S. Papageorgiou, Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Austral. Math. Soc. (Ser. A) 69 (2000) 245-271. [CrossRef] [MathSciNet] [Google Scholar]
  15. M.A. Krasnosels'kii and J. Rutic'kii, Convex functions and Orlicz spaces. Noorhoff, Groningen (1961). [Google Scholar]
  16. A. Kufner, O. John and S. Fučic, Function spaces. Noordhoff, Leyden (1977). [Google Scholar]
  17. V.K. Le, A global bifurcation result for quasilinear eliptic equations in Orlicz-Sobolev space. Topol. Methods Nonlinear Anal. 15 (2000) 301-327. [MathSciNet] [Google Scholar]
  18. V.K. Le, Nontrivial solutions of mountain pass type of quasilinear equations with slowly growing principal parts. J. Diff. Int. Eq. 15 (2002) 839-862. [Google Scholar]
  19. V.K. Le and K. Schmitt, Quasilinear elliptic equations and inequalities with rapidly growing coefficients. J. London Math. Soc. 62 (2000) 852-872. [CrossRef] [MathSciNet] [Google Scholar]
  20. V. Mustonen and M. Tienari, An eigenvalue problem for generalized Laplacian in Orlicz-Sobolev spaces. Proc. Roy. Soc. Edinb. A 129 (1999) 153-163. [Google Scholar]
  21. V. Mustonen, Remarks on inhomogeneous elliptic eigenvalue problems. Part. Differ. Equ. Lect. Notes Pure Appl. Math. 229 (2002) 259-265. [Google Scholar]
  22. Z. Naniewicz and P.D. Panagiotopoulos, Mathematical theory of hemivariational inequalities and applications. Marcel Dekker, New York (1995). [Google Scholar]
  23. P. Rabinowitz, Some aspects of nonlinear eigenvalue problems. Rocky Mountain J. Math. 3 (1973) 162-202. [Google Scholar]
  24. M. Struwe, Existence of periodic solutions of Hamiltonian systems on almost every energy surface. Bol. Soc. Brasil Mat. 20 (1990) 49-58. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Struwe, Variational methods. 2nd ed., Springer, Berlin (1991). [Google Scholar]
  26. M. Tienari, Ljusternik-Schnirelmann theorem for the generalized Laplacian. J. Differ. Equations 161 (2000) 174-190. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.